UNIVERSITY

(Accredited with 'A+' Grade by NAAC)

M. Sc. GEOLOGY (Two Year programme)

Regulation & Curriculum

2023 - 2024 onwards

DST-FIST Supported

DEPARTMENT OF EARTH SCIENCES

Faculty of Science

DEPARTMENT OF EARTH SCIENCES (DST-FIST Supported)

M. Sc. Geology (Two Year Programme)

(TANSCHE syllabus)

Programme Code: SEAR21

These rules and regulations shall govern the Two year post graduate studies leading to the award of degree of **Master of Science in Geology** in the Faculty of Science. These academic Regulations shall be called "**Annamalai University, Faculty of Science, M.Sc. Geology (Two Year) Regulations 2023**". They shall come into force with effect from the academic year 2023 – 2024.

1. Definitions and Nomenclature

- **1.1 University** refers to Annamalai University.
- **1.2 Department** means any of the academic departments and academic centers at the University.
- **1.3 Discipline** refers to the specialization or branch of knowledge taught and researched in higher education. For example, Biochemistry is a discipline in the Natural Sciences, while Economics is a discipline in Social Sciences.
- **1.4 Programme** encompasses the combination of courses and/or requirements leading to a degree. For example, M.A., M.Sc.
- 1.5 Course is an individual subject in a programme. Each course may consist of Lectures / Laboratory / Seminar / Project work / viva-voce etc. Each course has a course title and is identified by a course code.
- **1.6 Curriculum** encompasses the totality of student experiences that occur during the educational process.
- **1.7 Syllabus** is an academic document that contains the complete information about an academic programme and defines responsibilities and outcomes. This includes course information, course objectives, policies, evaluation, grading, learning resources and course calendar.
- **1.8** Academic Year refers to the annual period of sessions of the University that comprises two consecutive semesters.
- **1.9** Semester is a half-year term that lasts for a minimum duration of 90 days.
- **1.10** Choice Based Credit System: A mode of learning in higher education that enablesa student to have the freedom to select his/her own choice of elective courses across various disciplines for completing the Degree programme.
- **1.11 Credit** refers to the quantum of course work in terms of number of class hours in a semester required for a programme. The credit value reflects the content and duration of a particular course in the curriculum.
- **1.12** Credit Hour refers to the number of class hours per week required for a course in a semester. It is used to calculate the credit value of a particular course.

- **1.13 Programme Outcomes** (POs) are statements that describe crucial and essential knowledge, skills and attitudes that students are expected to achieve and can reliably manifest at the end of a programme.
- **1.14 Programme Specific Outcomes** (PSOs) are statements that list what the graduate of a specific programme should be able to do at the end of the programme.
- **1.15 Course Objectives** are statements that define the expected goal of a course in terms of demonstrable skills or knowledge that will be acquired by a student.
- **1.16 Course Outcomes** (COs) are statements that describe what students should be able to achieve/demonstrate at the end of a course. They allow follow-up and measurement of learning objectives.
- **1.17 Grade Point Average** (GPA) is the average of the grades acquired in various courses that a student has taken in a semester. The formula for computing GPA is given in section 11.3
- **1.18 Cumulative Grade Point Average** (CGPA) is a measure of overall cumulative performance of a student over all the semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters is given in section11.4.
- **1.19** Letter Grade is an index of the performance of a student in a particular course. Grades are denoted by the letters S, A, B, C, D, E, RA, and W.

2 **Programme Offered and Eligibility Criteria:**

The Department of Earth Sciences offers a Two-Year M. Sc. Geology programme. A pass in Bachelor's Degree with Geology / Applied Geology as major subject and Mathemetics, Physics, Chemistry, Botany, Zoology or any other science subjects as two allied subjects accepted by the Syndicate of Annamalai University as equivalent thereto are eligible for admission.

- 2.1 In the case of SC/ST and Differently-abled candidates, a pass is the minimum qualification for all the above Programmes.
- **3. Reservation Policy:** Admission to the various programmes will be strictly based on the reservation policy of the Government of Tamil Nadu.

4. **Programme Duration**

- 4.1 The Two Year Master's Programme consist of two academic years.
- 4.2 Each academic year is divided into two semesters, the first being from July to November and the second from December to April.
- 4.3 Each semester will have 90 working days (18 weeks).

Programme Structure

5.1 The Two Year Master's Programme consists of Core Courses, Elective Courses (Discipline Centric/Generic), Project, Skill Enhancement Course, Internship/industrialvisit and extension activity.

5.2 Core courses

- 5.2.1 Core Course is mandatory and an essential requirement to qualify for the Degree.
- 5.2.2 These are a set of compulsory courses essential for each programme.
- 5.2.3 The core courses include both Theory (Core Theory) and Practical (Core Practical) courses.

5.3 Project

5.3.1 Each student shall undertake a Project and submit a dissertation as per guidelines in the final semester.

- 5.3.2 The Head of the Department shall assign a Research Supervisor to the student.
- 5.3.3 The Research Supervisor shall assign a topic for research and monitor the progress of the student periodically.
- 5.3.4 Students who wish to undertake project work in recognized institutions/industry shall obtain prior permission from the Department. The Research Supervisor will be from the host institute.

5.4 Elective courses

5.4.1 Elective Course: Generic/Discipline Centric is a course that a student can choose from a range of alternatives.

5.5 Internship/Industrial Activity (Experiential Learning)

- 5.5.1 Experiential learning in the form of internship/industrial activity provides opportunities to students to connect principles of the discipline with real-life situations.
- 5.5.2 In-plant training/field trip/internship/industrial visit fall under this category.
- 5.5.3 Experiential learning is categorized as non-core course.

5.6 Industry/Entrepreneurship

This course is to introduce students to the activity of setting up a business or businesses taking on financial risks in the hope of profit.

- **5.7 Skill Enhancement Course: SEC** is a course designed to provide value-based or skill-based knowledge.
- 5.7.1 The main purpose of this course is to provide students with skills in the hands-on mode to increase their employability.
- **5.8 Extension Activity** The basic objective of extension activity is to create social awareness among the students by providing the opportunities to work with people and also to create an awareness and knowledge of social realities to have concernfor the welfare of the community and engage in creative and constructive societal development.
- 5.8.1 It is mandatory for every student to participate in extension activity.
- 5.8.2 All the students should enroll under NSS/NCC/CYRC/RRC or any other service organization in the University.
- 5.8.3 Students should put a minimum attendance of 40 hours in a year duly certified by the Programme Co-Ordinator.
- 5.8.4 Extension activity shall be conducted outside the class hours.
- 5.8.5 Extension activity is categorized as non-core course.

5.9 Value Added Course (VAC)

5.9.1 Students may opt to take Value Added Course beyond the minimum credits required for the award of the degree. VACs are outside the normal credit paradigm.

5.10 Online Courses

- 5.10.1 The Heads of Departments shall facilitate enrolment of students in Massive Open Online Courses (MOOCs) platform such as SWAYAM to provide academic flexibility and enhance the academic career of students.
- 5.10.2 Students who successfully complete a course in the MOOCs platform shall be exempted from one elective course of the programme.

5.11 Credit Distribution: The credit distribution is organized as follows:

Component	Course	Credits
Part A	Core (Theory)	45
	Core (Practical)	12
	Project with Viva voce	07
Part B (i)	Elective (Generic/Discipline Centric)	18
Part B (ii)	Internship/Industrial Visit	02
Part B (iii)	Skill Enhancement Course/Professional Competency Skill	06
Part C	Extension Activity	01
	TOTAL CREDITS	91

Part A component and Part B (i) will be taken into account for CGPA calculation for the post graduate programme and the other components of Part B and Part C will not be included for CGPA calculation and have to be completed during the duration of the programme as per norms, to be eligible for obtaining the PGdegree.

5.12 Credit Assignment

- Each course is assigned credits and credit hours on the following basis:
- 1 Credit is defined as
- 1 Lecture period of one hour duration per week over a semester
- 1 Tutorial period of one hour duration per week over a semester
- 1 Practical / Project period of two hours duration per week over a semester.

6 Attendance

- 6.1 Each faculty handling a course shall be responsible for the maintenance of Attendance and Assessment Record for candidates who have registered for the course.
- 6.2 The Record shall contain details of the students' attendance, marks obtained in the Continuous Internal Assessment (CIA) Tests, Assignments and Seminars. In addition the Record shall also contain the organization of lesson plan of the Course teacher.
- 6.3 The record shall be submitted to the Head of the Department and Dean once a month for monitoring the attendance and syllabus coverage.
- 6.4 At the end of the semester, the record shall be placed in safe custody for any future verification.
- 6.5 The Course teacher shall intimate to the Head of the Department at least seven calendar days before the last instruction day in the semester about the attendance particulars of all students.
- 6.6 Each student shall have a minimum of 75% attendance in all the courses of the particular semester failing which he or she will not be permitted to write the End- Semester Examination. The student has to redo the semester in the next year.
- 6.7 Relaxation of attendance requirement up to 10% may be granted for valid reasons such as illness, representing the University in extracurricular activities and participation in NCC/NSS/YRC/RRC.

7 Mentor-Mentee System

- 7.1 To help the students in planning their course of study and for general advice on the academic programme, the Head of the Department will attach certain number of students to a member of the faculty who shall function as a Mentor throughout their period of study.
- 7.2 The Mentors will guide their mentees with the curriculum, monitor their progress, and provide intellectual and emotional support.

7.3 The Mentors shall also help their mentees to choose appropriate electives and valueadded courses, apply for scholarships, undertake projects, prepare for competitive examinations such as NET/SET, GATE etc., attend campus interviews and participate in extracurricular activities.

8 Examinations

- 8.1 The examination system of the University is designed to systematically test the student's progress in class, laboratory and field work through Continuous Internal Assessment (CIA) Tests and End-Semester Examination (ESE).
- 8.2 There will be two CIA Tests and one ESE in each semester.
- 8.3 The Question Papers will be framed to test different levels of learning based on Bloom's taxonomy viz. Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation/Creativity.

8.4 Continuous Internal Assessment Tests

- 8.4.1 The CIA Tests shall be a combination of a variety of tools such as class t e s t, assignments and seminars. This requires an element of openness.
- 8.4.2 The students are to be informed in advance about the assessment procedures.
- 8.4.3 The pattern of question paper will be decided by the respective faculty.
- 8.4.4 CIA Tests will be for one- or two-hours duration depending on the quantum of syllabus.
- 8.4.5 A student cannot repeat the CIA Test-I and CIA Test-II. However, if for any valid reason, the student is unable to attend the test, the prerogative of arranging a special test lies with the teacher in consultation with the Head of the Department.
- 8.4.6 For the CIA Tests, the assessment will be done by the Course teacher

8.5 End Semester Examinations (ESE)

- 8.5.1 The ESE for the first and third semester will be conducted in November and for the second and fourth semester in May.
- 8.6 Candidates who failed in any course will be permitted to reappear in failed course in the subsequent examinations.
- 8.7 The ESE will be of three hours duration and will cover the entire syllabus of the course.

9 Evaluation

9.1 Marks Distribution

- 9.1.1 For each course, the Theory, Practical and project shall be evaluated for a maximum of 100 marks.
- 9.1.2 For the theory courses, CIA Tests will carry 25% and the ESE 75% of the marks.
- 9.2.2 For the Practical courses, the CIA Tests will carry 25% and the ESE 75% of the marks.

9.2 Assessment of CIA Tests

- 9.2.1 For the CIA Tests, the assessment will be done by the Course Instructor
- 9.2.2 For the Theory Courses, the break-up of marks shall be as follows:

	Marks
Test-I and Test-II	15
Seminar	5
Assignment	5
Total	25

9.2.3 For the Practical Courses (wherever applicable), the break-up of marks shall be as follows:

	Marks
Test-I	10
Test-II	10
Viva-voce and Record	05
Total	25

9.3 Assessment of End-Semester Examinations

9.3.1 Evaluation for the ESE is done by internal examiners.

9.4 Assessment of Project/Dissertation

- 9.4.1 The Project Report/Dissertation shall be submitted as per the guidelines.
- 9.4.2 The Project Work/Dissertation shall carry a maximum of 100 marks.
- 9.4.3 CIA for Project will consist of a Review of literature survey, experimentation/field work, attendance etc.
- 9.4.4 The Project Report evaluation and viva-voce will be conducted by a committee constituted by the Head of the Department.
- 9.4.5 The Project Evaluation Committee will comprise the Head of the Department, Project Supervisor, and a senior faculty.
- 9.4.6 The marks shall be distributed as follows:

Continuous Inter (25 Marks)	nal Assessment	End Semester Examination(75 Marks)						
Review-I - 10	Review-II -15	Project / Dissertation Evaluation	Viva voce					
		50	25					

9.5 Assessment of Value-added Courses

- 9.5.1 Assessment of VACs shall be internal. Two CIA Tests shall be conducted during the semester by the Department(s) offering VAC.
- 9.5.2 The grades obtained in VACs will not be included for calculating the GPA/CGPA.

9.6 Passing Minimum

- 9.6.1 A student is declared to have passed in each course if he/she secures not less than 50% marks in the ESE and not less than 50% marks in aggregate taking CIA and ESE marks together.
- 9.6.2 A candidate who has not secured a minimum of 50% of marks in a course (CIA + ESE) shall reappear for the course in the next semester/year.

10. Conferment of the Master's Degree

A candidate who has secured a minimum of 50% marks in all courses prescribed in the programme and earned the minimum required credits shall be considered to have passed the Master's Programme.

11. Marks and Grading

11.1 The performance of students in each course is evaluated in terms Grade Point (GP).

- 11.2 The sum total performance in each semester is rated by Grade Point Average (GPA) while Cumulative Grade Point Average (CGPA) indicates the Average Grade Point obtained for all the courses completed.
- 11.3 The GPA is calculated by the formula

$$GPA = \frac{\sum_{i=1}^{n} C_i G_i}{\sum_{i=1}^{n} C_i}$$

Where, C_i is the Credit earned for the Course i in any semester; G_i is the Grade Point obtained by the student for the Course i and n is the number of Courses passed in that semester.

11.4 CGPA is the Weighted Average Grade Point of all the Courses passed starting from the first semester to the current semester.

$$CGPA = \frac{\sum_{i=1}^{m} \sum_{i=1}^{n} C_i G_i}{\sum_{i=1}^{m} \sum_{i=1}^{n} C_i}$$

Where, C_i is the Credit earned for the Course t any semester;

 G_i is the Grade Point obtained by the student for the Course i and n is the number of Courses passed in that semester. m is the number of semesters.

11.5 Evaluation:

11.5.1 Performance of the student for each course will be rated as shown in the Table.

Range of Marks	Grade Points	Letter Grade
90 and above	10	S
80-89	9	А
70-79	8	В
60-69	7	С
55-59	6	D
50-54	5	E
Less than 50	0	RA
Withdrawn from the examination	0	W

11.5.2 A ten-point rating scale is used for evaluation of the performance of the student toprovide overall grade for the Master's Programme.

	0
CGPA	CLASSIFICATION OF FINAL RESULT
8.25 and above	First Class with Distinction
6.5 and above but below 8.25	First Class
5.0 and above but below 6.5	Second Class
0.0 and above but below 5.0	Re-appear

11.6 Classification of Results. The successful candidates are classified as follows:

11.6.1 For First Class with Distinction: Candidates who have passed all the courses prescribed in the Programme in the first attempt with a CGPA of 8.25and above within the programme duration. Candidates who have withdrawn from the End Semester Examinations are still eligible for First Class with Distinction (See Section 12 for details).

- 11.6.2 For First Class: Candidates who have passed all the courses with a CGPA of 6.5and above.
- 11.6.3 **For Second Class:** Candidates who have passed all the courses with a CGPA between 5.0 and less than 6.5.

- 11.6.4 Candidates who obtain overall highest CGPA in all examinations in the first appearance itself are eligible for University Rank.
- **11.6.5 Formula for Conversion of CGPA into Percentage** CGPA × 9.5 = Percentage

11.7 Course-Wise Letter Grades

- 11.7.1 The percentage of marks obtained by a candidate in a course will be indicated in a letter grade.
- 11.7.2 A student is considered to have completed a course successfully and earned the creditsif he/she secures an overall letter grade other than RA.
- 11.7.3 A course successfully completed cannot be repeated for the purpose of improving the Grade Point
- 11.7.4 A letter grade RA indicates that the candidate shall reappear for that course. The RA Grade once awarded stays in the grade sheet of the student and is not deleted even when he/she completes the course successfully later. The grade acquired later by the student will be indicated in the grade sheet of the Odd/Even semester in which the candidate has appeared for clearance of the arrears.
- 11.7.5 If a student secures RA grade in the Project Work/Field Work/Practical Work/Dissertation, he/she shall improve it and resubmit if it involves only rewriting/ incorporating the clarifications suggested by the evaluators or he/she can re-register and carry out the same in the subsequent semesters for evaluation.

12. Provision for Withdrawal from the End Semester Examination

- 12.1 The letter grade W indicates that a candidate has withdrawn from the examination.
- 12.2 A candidate is permitted to withdraw from appearing in the ESE for one course or courses in ANY ONE of the semesters ONLY for exigencies deemed valid by the University authorities.
- 12.3 Permission for withdrawal from the examination shall be granted only once during the entire duration of the programme.
- 12.4 Application for withdrawal shall be considered only if the student has registered for the course(s), and fulfilled the requirements for attendance and CIA tests.
- 12.5 The application for withdrawal shall be made ten days prior to the commencement of the examination and duly approved by the Controller of Examinations. Notwithstanding the mandatory prerequisite of ten days notice, due consideration will be given under extraordinary circumstances.
- 12.6 Withdrawal will not be granted for arrear examinations of courses in previous semesters and for the final semester examinations.
- 12.7 Candidates who have been granted permission to withdraw from the examination shall reappear for the course(s) when the course(s) are offered next.
- 12.8 Withdrawal shall not be taken into account as an appearance for the examination when considering the eligibility of the candidate to qualify for First Class with Distinction.
- 13. Academic misconduct: Any action that results in an unfair academic advantage/interference with the functioning of the academic community constitutes academic misconduct. This includes but is not limited to cheating, plagiarism, altering academic documents, fabrication/falsification of data, submitting the work of another student, interfering with other students' work, removing/defacing library or computer resources, stealing other students' notes/assignments, and electronically interfering with other students' library of these acts may be committed unintentionally due to lack of awareness, students shall be sensitized on issues of academic integrity and ethics.
- 14. Transitory Regulations: Wherever there has been a change of syllabi, examinations based on the existing syllabus will be conducted for two consecutive years after implementation of the new syllabus in order to enable the students toclear the arrears. Beyond that, the students will have to take up their examinations in equivalent subjects, as

per the new syllabus, on the recommendation of the Head of the Department concerned.

15. Notwithstanding anything contained in the above pages as Rules and Regulations governing the Two-Year Master's Programmes at Annamalai University, the Syndicate is vested with the powers to revise them from time to time on the recommendations of the Academic Council.

DEPARTMENT OF EARTH SCIENCES M.Sc. GEOLOGY (TWO YEAR) PROGRAMME PROGRAMME CODE: SEAR21

Curricula and Scheme of Examination

(For students admitted from the academic year 2023-2024)

List of Courses

Course		H	ours				
			/			Mark	s
	Course Title	W	/eek				
Code	Course mile	L	Р	С	CIA	ESE	Tota I

Semester - I

23GEOC101	Core I: Physical Geology and Geomorphology	5	5	25	75	100
23GEOC102	Core II: Mineralogy and Instrumentation Techniques	5	5	25	75	100
23GEOP103	Core III: Mineralogy and Paleontology Practical	10	4	25	75	100
23GEOE104	Elective – I Recent Trends in Paleontology	5	3	25	75	100
23GEOE105	Elective – II Stratigraphy of India and its Application	5	3	25	75	100
		30	20			500

Semester - II

23GEOC201	Core IV: Structural Geology and Geotectonics	5	5	25	75	100
23GEOC202	Core V : Applied Remote Sensing and GIS	5	5	25	75	100
23GEOP203	Core VI: Structural Geology & Geotectonics and Petrology Practical	8	4	25	75	100
23GEOE204	Elective –III Applied Petrology (Mandatory)	4	3	25	75	100
23GEOE205	Elective – IV Environmental Earth Sciences	4	3	25	75	100
23GEOS206	Skill Enhancement Course [SEC] - I Introduction to Geological software	4	2	25	75	100
		30	22			600

Semester - III						
23GEOC301	Core VII: Geophysics	6	5	25	75	100
23GEOC302	Core VIII: Hydrogeology	6	5	25	75	100
23GEOP303	Core IX: Geophysics Practical	6	5	25	75	100
23GEOP304	Core X : Applied Hydrogeology Practical	5	4	25	75	100
23GEOE305	Elective - V Economic Geology (Mandatory)	4	3	25	75	100
23GEOS306	Skill Enhancement course [SEC] – II Field studies written report and evaluation.	3	2	25	75	100
23GEOI307	Internship / Industrial Activity / Field mapping		2	25	75	100
		30	26			700

Semester - IV

23GEOC401	Core XI: Applied Geochemistry	6		5	25	75	100
23GEOC402	Core XII: Engineering and Mining Geology	6		5	25	75	100
23GEOD403	Project with viva voce	10		7	25	75	100
23GEOE404	Elective Paper VI / Petroleum Exploration and Mud logging (Industry / Entrepreneurship 20% Theory 80% Practical)	4		3	25	75	100
23GEOS405	Skill Enhancement Course [SEC] - III Professional competency skills / Geological tour	4	9	2	25	75	100
23GEOX406	Extension Activity NSS / NCC			1	25	75	100
		30		23			600
	Total Credits			91			2400

L - Lectures; P - Practical; C - Credits; CIA - Continuous Internal Assessment; ESE - End-Semester Examination

						0			S		Mark	s
Subject Code	Subject Name	Category	L	Т	Р		Credits	Inst. Hour	CIA	External	Total	
23GEOC101	Core I Physical Geology and Geomorphology	Core	Y	-	-	-	5	5	25	75	100	
	Course Obje	ectives										
CO1	To interpret natural processes which	act on	the	Ear	th's	sur	face	and	the l	andfo	rms.	
CO2	To recall the types of landforms and	quater	nary	' lan	ldsc	ape	s					
CO3	To employ geomorphological studies	s for sti	uct	ural	and	1 mi	inera	l exp	olora	tion		
CO4	To understand the pedochemical pro	cess res	spor	nsib	le f	or th	ne di	ssolu	ition	rate.		
CO5	To identify different processes invol	ved dif	fere	nt g	eol	ogic	al la	ndfo	rms.			
UNIT	Details						N H	lo. of lour:	f s	Cou Objec	rse tives	
Ι	Earth and its internal structure, composition, size and shape. An overview of plate tectonics including elementary concepts of plates, lithosphere, asthenosphere, types of plate boundaries and associated important geological features like oceanic trenches, volcanic arcs, accretionary wedges, topography of mid-ocean ridges and transform faults. Palaeomagnetism and its application for determining palaeoposition of continents. Isostasy, Orogeny and						12		СС)1		
Ш	Concepts of geomorphology. Landforms in relation to climate, rock type, structure and tectonics. Earthquakes and related landscape alterations, Seismic belts of the earth. Seismicity at plate boundaries. Principles of Geodesy.							12		CC	02	
III	Geomorphic Processes – weathering, pedogenesis, mass movement, erosion, transportation and deposition.							12		CC)3	
IV	Geomorphic landforms – fluvial, glacial, aeolian, coastal, volcanoes and karst.							tal, 12 CO		04		
V	Quaternary landscapes. Fluvial landscapes, Aeolian landscapes, coastal landscapes.							12 CO5)5	
	Total							60				
	Text Boo	ks					~ -					
1.	Holmes, D.L. (1981) Principles of P	hysical	Geo	olog	gy, I	$\frac{ELB}{1}$	S Ec		1.	T 1		
2.	Pethick, J. (1984) An Introduction to Coastal Geomorphology. Arnold, London.											

SEMESTER – 1: Physical Geology and Geomorphology (Ist year)

3	Thornbury, W.D. (1969) Principles of Geomorphology. Wiley Eastern Ltd.									
4	Richar Huggett, Fundamentals of Geomorphology									
5	Strahler, A.N. (1952) Physical Geology. John Wiley & Sons Inc., New York.									
	References Books									
(Latest editions, and the style as given below must be strictly adhered to)										
1.	Holmes, D.L. (1981) Principles of Physical Geology. ELBS Edition.									
2.	Pethick, J. (1984) An Introduction to Coastal Geomorphology. Arnold, London.									
3.	Thornbury, W.D. (1969) Principles of Geomorphology.Wiley Eastern Ltd.									
4.	Richar Huggett, Fundamentals of Geomorphology									
5.	Strahler, A.N. (1952) Physical Geology. John Wiley & Sons Inc., New York.									
	Web Resources									
1.	https://journals.sagepub.com/home/jom									
2.	https://www.americangeosciences.org/									
3.	https://www.egu.eu/									
4.	https://www.geosociety.org/									

- CO1: Basic knowledge about the internal structure of earth,
- CO2: Students studied the plate tectonics theory.
- CO3: Get knowledge about the Landform: exogenic and endogenic processes
- CO4: Learn the Landform and tectonics Drainage pattern, sea level change and geomorphic cycle.
- CO5: Students can introduce the basis of Quaternary landscapes.

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1	3	3	3	2	3	3	3	2
CO 2	3	3	3	3	3 3		3	3
CO 3	3	2	3	3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	1
CO 4	2	3	3	3	2	3	3	3
CO 5	3	3	2	3	3	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

Program Specific Outcomes

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester- I: Mineralogy and Instrumentation Techniques (Ist year)

								s		Marks		
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total	
23GEOC102	CoreIIMineralogyandCoreYInstrumentation Techniques								25	75	100	
	Course Obje	ectives										
CO1	The students will be able to understa characteristics.	The students will be able to understand and explain the basic of mineral characteristics.										
CO2	Will be able to employ their practica	l know	ledg	ge in	n fu	rthe	r stu	dies.				
CO3	Can recall techniques for certain nec	Can recall techniques for certain necessities.										
CO4	Can evaluate the accuracy and summ practical activities.	naries tl	ne n	neth	ods	ada	aptec	l for	certa	ain		
CO5	Can explain and summarise problem	l .										
UNIT	Details						N H	lo. oi Iour:	f s	Cou Objec	rse tives	
Ι	Introduction to crystallography – Symmetry elements – Ison Orthorhombic, Hexagonal, Monoo systems – Normal classes.	Crysta netric, clinic	al 1 7 and	syst Fetra T	ems agoi ricli	nal, nic		12		CO1		
II	Stereographic projections - Axial	ratio	- 2	Zon	es a	and		12		CC	02	

		r									
	zonal symbols – Tautozonal faces – Equation of the										
	normal – Napier's Theorem – Tangent relations – Sine										
	ratio – Cosine ratio.										
	Description and composition of the following mineral										
	groups: Quartz, Feldspars, Feldspathoids, Micas,										
III	Garnets, Olivine, Pyroxenes, Amphiboles, Zeolites and	12	CO3								
	Carbonate minerals										
	Introduction to Optical Minoralogy Electrical magnetic										
	and antical properties of minerals. Depending of light										
	and optical properties of initiality – Properties of light –										
	Transmissivity and Reflectivity – Polarization –										
IV	Extinction – Dichroism – Pleochroism – Interference										
1 V	colors – Refringence and Birefringence – Order of	$f \begin{vmatrix} 12 \\ 0 \end{vmatrix} CO4$									
	interference - Conoscopy - Interference figures -										
	Concepts of crystal field theory and mineralogical										
	spectroscopy.										
	Spot tests – Paper chromatography – Nephelometry –										
	Turbidimetry – Spectroscopy – Flame photometry – X-										
V	ray spectroscopy – UV spectroscopy – Mass	12	CO5								
	spectroscopy – Accelerated mass spectroscopy.										
	Total	60									
	Donald Bloss F. (1971) Crystallography and Crystal Chem	istry – An l	Introduction								
1.	published by Holt, Rinehart and Winston, Inc., New York	istry min	intoduction								
	William M Blackburn and William H Dennen (1988) Principles of Mineralogy										
2.	(Second Edition) published by WCB Publishers England.		85								
3.	Kerr P.F, Optical Mineralogy, 4th ed McGraw Hill New Y	ork (1977)									
	Gribble C.D. & A.I. Hall A Practical Intro	oduction	to Ontical								
4.	Mineralogy Springer London(1985)	Juction	to optical								
	Tisliar S K Haldar Josip (2013) Introduction to mineralo	ov and netr	ology								
5.	Burlington: Elsevier Science, ISBN 9780124167100.	gj und pou	01085.								
	References Books										
(La	test editions, and the style as given below must be strictly	adhered to	D)								
1	Cornelis Klein and Cornelius S. Hurlbut, Jr. (1993) Manua	l of Minera	logy								
1.	published by John Wiley & Sons, Inc. Singapore.										
2.	Paul F. Kerr (1967) Optical Mineralogy, John Wiley & Son	ns, New Yo	rk.								
3	Wenk, Hans-Rudolf; Bulakh, Andrey (2016). Minerals:	Their Con	stitution and								
5.	Origin. Cambridge University Press. ISBN 978131642528	2.									
	Whewell, William (2010). "Book XV. History of Mine	ralogy". H	istory of the								
4.	Inductive Sciences: From the Earliest to the Present Times	s. Cambridg	ge University								
	Press. pp. 187–252. ISBN 9781108019262.	<u> </u>	C								
5	Laudan, Rachel (1993). From mineralogy to geology : the standard standard (1993).	toundations	of a								
<u>.</u>	science, 1650-1850 (Pbk. ed.). Chicago: University of Chic	cago Press.									
5.	ISDN 0780226460479										
5.	ISBN 9780226469478. Web Resources										
	ISBN 9780226469478. Web Resources										
<u> </u>	ISBN 9780226469478. Web Resources https://mineralogy-ima.org/ https://www.socminpet_it/dwl_php?file=SIMP/GNM/SIMP	ELEM pd	f								

3.	https://www.mineralogicalassociation.ca/
4.	https://www.cambridge.org/core/societies/mineralogical-society-of-great-britain- and-ireland
5.	http://www.minsocam.org/

Course outcome

- CO1: Basic knowledge on crystal structures and bonding and laws
- CO2: Student can learn about the Silicate structures and their physical and chemical properties
- CO3: Students get knowledge about the description and composition the minerals
- CO4: Student gain knowledge on Optical mineralogical studies
- CO5: Student apply the instrumentation techniques in mineralogical studies.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	2	3	1	2	3	2	1	2
CO 2	3	2	2	3	1	2	3	2	1	2
CO 3	3	2	2	3	1	2	3	2	1	2
CO 4	3	2	2	3	1	2	3	2	1	2
CO 5	3	2	2	3	1	2	3	2	1	2

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	3	3	3	3	3	
CO 2	3	3	3	3	3	
CO 3	3	3	3	3	3	
CO 4	3	3	3	3	3	
CO 5	3	3	3	3	3	
Weightage	15	15	15	15	15	
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0	

Semester- I: (First year)

								S		Mark	S	
Subject Code	Sub	ject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
23GEOP103	Core III : Paleontology	Mineralogy and Practical	Core	-	-	10	-	4	-	25	75	100
		Course Objectives										
CO1	To identify m	To identify minerals in hand specimens.										
CO2	To learn the o	ptical properties of m	inerals t	throu	ugh	micro	osco	opes	•			
CO3	To determine	the three dimensional	& visu	aliza	atior	of c	ryst	als.				
CO4	To identify pr	e historic species.										
CO5	Able to under	stand the evolution of	organis	sm ir	n dif	ferer	it pe	erioc	ls.			
Mineralogy:	 i. Megas Pyrox Apatit Kyani ii. Micro Pyrox iii. Optica a) b) c) d) e) iv. Calcut miner v. Stereo Orthomiller relation norma 	scopic identification of ene, Amphibole, Mi e, Calcite, Gypsum te, Sillimanite, Andal scopic study of: Q ene, Amphibole and of al experiments: Determination of p Anorthite content fr Birefringence of mit Pleochroic scheme 2V by Mallards met Optic signs of uniax lation of molecular als. ographic projections of chombic, Monoclinic indices of faces onships, Napier's rul l.	of: Quar ca, Tou a. Meta usite, Sp puartz, D other acc oblagiocla om extin nerals-u hod, tial and and su of crysta and Tri- applic e, law	rtz, I urma mor phen Feld cesso ase nctic sing biax truct als c clini ation of	Feld lline phic span ory = orie on a g Best ial 1 tural of Is ic sy n c anh	spar , To , To tauro datauro miner entation ngle f rek co miner for omet stem of W armo	- O paz, nera olite Ortil rals. on mea omp rals. mul ric, . Ca Veis nic	rthoo , Be uls: , Ch hocl	class eryl, Gan ond ase hin emen ator of rago latio cone io a	e & F Zirc rnet, rodite & F secti- nts. some onal, 1 n of a law	Plagio on, R Cord Plagio on ar impo Hexag axial r , Ta quatio	clase, cutile, ierite, clase, ad its ortant gonal, ratios, ngent on to

Paleontology:	i Mollusca: Pelecypoda - Arca Glycimeris (Pectenculus) Inoceramus
	Ostrea, Alectryonia, Pecten, Spondylus, Trigonia, Pholadomya, Cardita,
	Hippurites, Cardium, Venus, Unio, Megalodon, Meretrix, Gryphaea,
	Exogyra.
	ii. Gastropoda:- Natica, Trochus, Turbo, Turritella, Fusus, Conus, Murex,
	Physa, Busycon
	iii. Cephalopoda: Natilus, Goniatites, Ceratities, Ammonite, Phyiloceras,
	Acanthoceras, Scaphites, Turrilites, Belemininites
	iv. Brachiopoda: Lingula, Orthis, Productus, Pentamerus, Rhynoconella,
	Terebratula, Atrypa, Spirifer and Athyris.
	v. Echinoidea: Cidaris, Hemicidaris, Stigmatophygus, Holaster, Hemiaster,
	Micraster.
	vi. Echinodermata : Crinoids; Encrinus, Marsupites
	vii. Blastoidea: Pentremites
	viii. Arthropoda: Trilobita; Paradoxides, Olinus, Ollenellus, Calymene,
	Phacops
	ix. Hemichordate: Graptoloidea; Tetragraptus, didymograptus,
	Phyllograptus, Diplograptus, Monograptus, Rastites
	x. Plant fossils: Calamites, Sphenophyllym, lepidodendron, Sigillaria,
	Glossopteris, Gangamopteris, Gondwanadium, Ptilophyllum.
Reading List	1 Donald Bloss E (1971) Crystallography and Crystal Chemistry An
(Print	Introduction published by Holt Rinehart and Winston Inc. New York
and	2 William M. Blackburn and William H. Dennen (1988) Principles of Mineralogy
Online)	(Second Edition) published by WCB Publishers England
Recommended	1 Cornelis Kloin and Cornelius S. Hurlbut, Ir. (1002) Manual of Mineralogy
Texts	nublished by John Wiley & Sons Inc. Singapore 2 Dayl F. Kerr (1967) Optical
10/10	Mineralogy John Wiley & Sons, Inc. Singapore. 2. Faul F. Kell (1907) Optical
	winieratogy, John whey & Johs, New TOIK.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
CO 3	2	3	1	3	3	1	3	2	3	2
CO 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

								S		Mark	s	
Subject Code	Subject Name	Category	L	Т	Р	ο	Credits	Inst. Hour	CIA	External	Total	
23GEOE104	Elective paper I Recent Trends in Paleontology	Elec tive	Y	-	-	-	3	5	25	75	100	
	Course Obje	ectives										
Learn about the origin and evolution of life, understanding species concept andstudy of the major events in the history of Precambrian and Phanerozoic life.Detailed study about vertebrate paleontology.											d	
CO2	Learn about the morphology, classifi structure of shells of selected groups	ication, of orga	evo anis	oluti ms.	ona	ry t	rend	, cor	npos	sition a	nd	
CO3	To explain about geological history, more important genera	geogra	phic	cal c	listı	ribu	tion	and	desc	ription	of	
CO4	Demonstrating the sampling method micropaleontology.	Demonstrating the sampling methods and sample processing techniques of nicropaleontology.										
CO5	To know about the application of mi	cropale	ont	olog	gy ii	n hy	droc	arbo	n ex	exploration.		
UNIT	Details								No. ofCourseHoursObjective			
Ι	Fossil record and geological time-scale. Evolutionary changes in molluscs and mammals in geological time. Principles of evolution.Use of species and genera of foraminifera and Echinodermata in biostratigraphic correlation. Different microfossil groups and their distribution in India. Functional morphology, evolution and significance of Plant Fossils, Fishes, Horse, Elephant and Man. Dinosaurs and their extinction. Taphonomy and environmental factors, Oxygen and Carbon isotope studies of fossils and paleoclimates –								12 CO1			
II	Theories on origin and evolution of life – Phylogenetic and Ontogenic Analysis – Species Concept – Types of Fossils and Types of Species – Palingensis – Coenogensis – Proterogenesis - Thanatocoenosis – Biocoenosis – Sidocoenosis - Biomineralisation and Trace Fossils – Fossils and their uses – Biometrics – Major events in the history of Precambrian and Phanerozoic life.								12 CO2			
III	Vertebrate paleontology: Succession through geologic time. Broad class some characteristic Indian vertebrate Tertiary vertebrate - their	on of v ification e gener distri	verte nano ra. I ibut	ebra d st ndia ion	ite udy an p	life of ore- and	12 C			CC	02	

		-	
	 paleogeographic implication; extinction of dinosaurs. Indian Tertiary vertebrate - Siwalik mammals; phylogeny Equidae and Proboscidae. Indian fossil Hominoides and modern theories regarding human evolution. 		
IV	Invertebrate paleontology: an overview. Morphology, classification, evolutionary trend, composition and structure of shells of selected groups of organisms - Porifera, Bryozoa, Mollusca, Brachiopoda. Geological history, geographical distribution and description of more important genera of Trilobita, Echinoides, Coelenterata and Graptoloidea.	12	CO2
V	Micropaleontology: Sampling methods and sample processing techniques. Types of microfossils.Calcareous Microfossils - Foraminifera - major morphologic groups; Benthic Foraminifera; depth biotopes, value in paleobathymetric determination. Larger foraminifera – their utility in Indian stratigraphy. Planktonic foraminifera and calcareous nannofossils. Ostracoda - outline morphology, paleoecology & geological history. Brief knowledge about pteropods, calpionellids and calcareous algae. Application of micropaleontology in	12	CO2
	hydrocarbon exploration.		
	hydrocarbon exploration. Text Books		
1.	Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar.	.C. Jain	and M.S.
1.	Calculations algae: Application of Interopationtology in hydrocarbon exploration. Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publication. New Delhi.	.C. Jain lishers and	and M.S. Distributors,
1. 2. 3.	Categories argae: Application of Interopationtology in hydrocarbon exploration. Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Vishal Publications, Jalandhar. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995)	.C. Jain lishers and	and M.S. Distributors,
1. 2. 3. 4.	Calculations algae. Application of Interopationtology in hydrocarbon exploration. Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Vishal Publications, Jalandhar. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005)	.C. Jain lishers and lge Univers	and M.S. Distributors, sity Press. D
1. 2. 3. 4. 5.	Categories argae: Application of Interopationtology in hydrocarbon exploration. Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952).	.C. Jain lishers and	and M.S. Distributors, sity Press. D
1. 2. 3. 4. 5.	Catego and the style as given below must be style as given b	.C. Jain lishers and lge Univers	and M.S. Distributors, Sity Press. D
1. 2. 3. 4. 5. (La	Catego and the style as given below must be strictly Text Books Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952). References Books atest editions, and the style as given below must be strictly Principles of Invertebrate Palaeontology. Shrock R R	.C. Jain lishers and lge Univers adhered to and Twee	and M.S. Distributors, Sity Press. D
1. 2. 3. 4. 5. (La 1.	Carearcous argae: Application of Interopationtology in hydrocarbon exploration. Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952). References Books atest editions, and the style as given below must be strictly Principles of Invertebrate Palaeontology, Shrock R.R (2005), CBS Publishers and Distributors, New Delhi.	.C. Jain lishers and lge Univers adhered to and Twend	and M.S. Distributors, Sity Press. D
1. 2. 3. 4. 5. (La 1. 2.	Calculations and all control of micropation of gy micropation Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952). References Books atest editions, and the style as given below must be strictly Principles of Invertebrate Palaeontology, Shrock R.R (2005), CBS Publishers and Distributors, New Delhi. Invertebrate Fossils. Moore R.C, Lalicker C.G and Fishe Hill.	.C. Jain lishers and lige Univers adhered to and Twent er A.G (19)	and M.S. Distributors, Sity Press. D b) bhofel W.H, 52) McGraw
1. 2. 3. 4. 5. (La 1. 2. 3.	Calcateous argae: Application of interopation interopation interopation in the style and interval interv	.C. Jain lishers and lige Univers adhered to and Twend er A.G (19) Chicago H	and M.S. Distributors, Sity Press. D bohofel W.H, 52) McGraw Press, 4 th Edt.
1. 2. 3. 4. 5. (La 1. 2. 3. 3. 4.	Calcarcous argae. Application of Interopation of Interopation of Statest evolution and hydrocarbon exploration. Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952). References Books atest editions, and the style as given below must be strictly Principles of Invertebrate Palaeontology, Shrock R.R (2005), CBS Publishers and Distributors, New Delhi. Invertebrate Fossils. Moore R.C, Lalicker C.G and Fisher Hill. The Vertebrate Story, Romer A.S, (1959) University of Chicago. Palaeontology An Introduction, E.W.Nield and V.C.T.Theress, Oxford.	.C. Jain lishers and lige Univers adhered to and Twend er A.G (198 Chicago H ucker (198	and M.S. Distributors, Sity Press. D bhofel W.H, 52) McGraw Press, 4 th Edt. 5) Pergamon
1. 2. 3. 4. 5. (La 1. 2. 3. 4. 5.	Text Books Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publications, Jalandhar. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952). References Books atest editions, and the style as given below must be strictly Principles of Invertebrate Palaeontology, Shrock R.R (2005), CBS Publishers and Distributors, New Delhi. Invertebrate Fossils. Moore R.C, Lalicker C.G and Fisher Hill. The Vertebrate Story, Romer A.S, (1959) University of Chicago. Palaeontology An Introduction, E.W.Nield and V.C.T.The Press, Oxford. Colbert E.H. et al., Evolution of the Vertebrates, Wiley. Ne	.C. Jain lishers and lige Univers adhered to and Twender A.G (19) Chicago H ucker (198) w Delhi 20	and M.S. Distributors, Distributors, Sity Press. D Dohofel W.H, 52) McGraw Press, 4 th Edt. 5) Pergamon 02)
1. 2. 3. 4. 5. (La 1. 2. 3. 4. 5.	Text Books Text Books Palaeontology Evolution and animal distribution. Anantharaman, (1996), Vishal Publications, Jalandhar. Invertebrate Palaeontology - H.Woods, (1985), CBS Publ. New Delhi. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995) Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambrid 2005) Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952). References Books atest editions, and the style as given below must be strictly Principles of Invertebrate Palaeontology, Shrock R.R (2005), CBS Publishers and Distributors, New Delhi. Invertebrate Fossils. Moore R.C, Lalicker C.G and Fishe Hill. The Vertebrate Story, Romer A.S, (1959) University of Chicago. Palaeontology An Introduction, E.W.Nield and V.C.T.Theress, Oxford. Colbert E.H. et al., Evolution of the Vertebrates, Wiley. Ne Web Resources	.C. Jain lishers and lige Univers adhered to and Twend er A.G (19) Chicago H ucker (198) w Delhi 20	and M.S. Distributors, Sity Press. D b) bhofel W.H, 52) McGraw Press, 4 th Edt. 5) Pergamon 02)

2.	https://www.lyellcollection.org/doi/10.1144/GSL.SP.2001.190.01.14.
3.	https://digitalatlas.cose.isu.edu/geo/basics/fossil.htm
4.	https://www.sciencedirect.com/topics/immunology-and- microbiology/hemichordata
5.	https://www.qm.qld.gov.au/Explore/Research/Biodiversity
~	

- CO1: Student can understand about the fossil record and geological time-scale
- CO2: To get knowledge about the theory and Origin of life
- CO3: Stundents get more knowledge about vertebrate paleontology
- CO4: Stundents get more knowledge about Invertebrate paleontology
- CO5: Student gain knowledge on micropaleontology: Sampling methods and sample processing techniques

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
CO 3	2	3	1	3	3	1	3	2	3	2
CO 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		-						S		Marks		
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total	
23GEOE105	Elective paper II Stratigraphy of India and its Applications	Elec tive	Y	-	-	-	3	5	25	75	100	
	Course Obje	ectives										
CO1	Can recall the Stratigraphy of India.											
CO2	Can differentiate different deposits o	f geolo	gica	al ti	me.							
CO3	To understand and compare different	t applic	atio	ns 1	ela	ted t	to St	ratig	raph	ıy.		
CO4	Can interpret the sequence of stratig	raphic c	colu	mn.								
CO5	Can identify different processes invo	lved du	urin	g di	ffer	rent	geol	ogic	al tii	me.		
UNIT	Dotails						N	Io. o :	f	Cou	rse	
UNII	Details						H	Iour	s	Objec	tives	
Ι	Stratigraphy of India – Dharwar Supergroup – Mineral riches of Archaean. Cuddapah system and its mineral riches. Vidhyan system and its mineral riches. Cambrian System – Salt Range and Age of Saline Series. Ordovician and Silurian systems.							12		CC	91	
Π	Stratigraphy of India (Contd.) - Devonian system. Carboniferous system. The Gondwana Group – Structure of the Gondwana Basin – Climate and Sedimentation – Economic minerals in the Gondwanas. Upper Carboniferous and Permian systems – Triassic system – Lilang system - Jurassic system – Jurassic of Kutch - Crataceous system – Crataceous of Trichinopoly.									CO2		
III	Stratigraphy of India (Contd.) - Deccan traps – Lametabeds – Infra-trappean and Inter-trappean beds – Age ofDeccan traps – Economic riches of Deccan traps.Tertiary group – Rise of the Himalayas – Eocene systemand its Economic minerals – Oligocene and LowerMiocene systems and Petroleum – Middle Miocene andLower Pleistocene – Siwalik system – Pleistocene andRecent – Culture, Climate and deposits in India – Humanevolution and Culture – Glaciation and Human Culture –Chronology of Glaciation – Karewa formation – Potwarsilts and Loess – Indo-Gangetic alluvium – Coastaldeposits – Aeolian and other deposits – Recent deposits –Useful Mineral deposits of Pleistocene and Recent –Soils – Recent changes of level along the coast –								СС	02		
IV	Applications of Stratigraphy – Geologic time Units – Chronostratigraphy - Golden spike Section and Point (GSSP) –	Geolo Ge s – Gl Stratig	ogica eocl obal raph	al nror l St nic	time nolo and Un	e - ogy. lard nits.		12		CC	02	

		1	
	Lithostratigraphy - Stratigraphic relationships -		
	Lithostratigraphic Units – Lithodemic units –		
	Application of Lithostratigraphy – Gaps in the record.		
	Biostratigraphy – Fossils and Stratigraphy –		
	Classification of organisms – Evolutionary trends –		
	Biozones and Zone fossils – Taxa used in		
	Biostratigraphy – Biostratigraphic correlation –		
	Biostratigraphy in relation to other stratigraphic		
	techniques.		
	Applications of Stratigraphy (Contd.) - dating and		
	correlation techniques - Radiometric dating -		
	Application of radiometric dating – Other isotopic and		
	chemical techniques – Chemostratigraphy –		
	Magnetostratigraphy – Dating in the quaternary.		
*7	Sequence stratigrphy - Sea-level changes – Sea level	10	GO2
V	changes and sedimentation – Depositional sequences and	12	CO2
	systems tracts – Parasequences and its components of		
	system tracts – Carbonate sequence stratigraphy –		
	Sequence stratigraphy in non-marine basins – Alternative		
	schemes in sequence stratigraphy – Applications of		
	sequence stratigraphy – Causes of sea level fluctuations.		
	Text Books		
	Geology of India and Burma M.S. Krishnan, (2010), 6 th Ec	li., C.B.S p	ublishers and
1.	Distributors, Delhi	· 1	
2.	Geology of India, D.N. Wadia, (1966), McMillan company	, London	
2	Vaidyanadhan.R&M.Ramakrishnan, Geology of India. Geo	ological So	ciety of
5.	India. Bangalore(2008)		
4	Mehdiratta R.C, Geology of India, Pakisthan, Bangladesh	and Burma	. Atma Ram
4.	&Sons.Delhi(1974)		
	Geology& Mineral Resources of the States of India. Mis	c Pub.No.3	0.Geological
5.	Survey of India. Kolkota. (Several individual volumes	available o	nline at GSI
	portal) GSI(2005).		
	References Books		
(La	atest editions, and the style as given below must be strictly	adhered to	D)
1	Fundamentals of Historical Geology and Stratigraphy o	f India, Ra	vindrakumar
1.	(1985), Wiley Eastern ltd, New Delhi.	,	
2	Principle of Stratigraphy, Dunbar and Roggers, (1964). J	ohn Wilev	and co, New
2.	York	2	,
	An Introduction in Stratigraphy, Stamp L.D. (1964), Thor	nas Murby.	Museum St.
3.	WCI. London.		
	Stratigraphic Principles and Practices, Weller, J.M. (1962	2). Harper &	& Bros. New
4.	York	,,per c	
	Kumar R. Fundamentals of Historical Geology and Stratig	aphy of	
5.	India Wiley New Delhi (1988)	"Pirj OI	
	Web Resources		
1	https://stratigraphy.org/		
1.	https://www.comm.org/		
۷.	nups://www.sepin.org/		

3.	https://www.geosocindia.org/
4.	https://www.moes.gov.in/
5.	https://isegindia.org/

- CO1: Students studied and gain knowledge on Dharwar Supergroup Mineral riches of Archaean.
- CO2: Students able to understand about the Gondwana Group and its stratigraphy.
- CO3: Students get knowledge on Deccan traps.
- CO4: Students understand the Stratigraphy of India.
- CO5: Students used to study the Applications of Stratigraphy.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	3	1	3	3	1	3	2	3	2
CO 2	2	3	1	3	3	1	3	2	3	2
CO 3	2	3	1	3	3	1	3	2	3	2
CO 4	3	3	3	3	3	3	2	3	3	3
CO 5	3	3	3	3	3	3	2	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester- II: (First year)

		•						S		Marks		
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total	
23GEOC201	Core IV Structural Geology and Geotectonics	Core	Y	-	-	-	5	5	25	75	100	
	Course Objectives											
CO1	The student can interpret and evaluate different structures that exist in the earth.											
CO2	Can critically assess and review structures.	the ener	rgy	nee	ded	to (cause	e diff	erer	nt		
CO3	Can describe and explain major a	and mir	or s	stru	ctur	es.						
CO4	Can understand to compare and c	contrast	str	uctu	ires	rela	ted	to ea	ch o	ther.		
CO5	Can evaluate and explain the cau	ises of c	liffe	eren	t sti	uct	ures.					
UNIT	Details						N H	lo. of lour:	f 5	Cou Objec	rse tives	
Ι	Theory of stress and strain – Behavior of rocks under stress – Mohr's circle – Various states of stress and their representation by Mohr's circles – Different types of failure and sliding criteria – Geometry and mechanics of fracturing and conditions for re-activation of pre-existing discontinuities – Paleostress analysis – Common types of finite strain – Ellipsoids – L-, L-S-, and S-tectonic							12		CC	01	
Ш	Techniques of strain analysis – Par patterns – Progressive strain history determination. Deformation mechan in deformation processes – Geome brittle-ductile and ductile shear analysis – Field and laboratory tec percentage diagrams – Preparat diagrams of quartz, biotite and cal fabric – Symmetry of movement.	rticle pay and misms – etry an zones hniques tion of lcite –	aths neth Rol d a – I s – f I Syr	an ods e of nal Petro Poi petro	d fl for f flu ysis ofat nt a ofat etry	ow its ids of oric and oric of		12		CC)2	
III	Rotated minerals – Syn-, pre- an Differential movement in rocks usin Oscillatory movements – Character – Indian and global evidences – M neotectonics. Sheath folds – Geome development of folds – Boudins – F – Interference patterns and structura superposed folding – Fault-related and mechanics of faults – Gravity-in	nd posing rotat istics – Method try and oliation il analy folding duced s	t-kin ed i Ne s of me a and sis i g – struc	nem min cote f str cha d lin in a Geo	natic eral ctor udy nics neat reas ome es.	s – s – of of ion of etry		12		СС	02	

IV	Major tectonic features and associated structures in extensional-, compressional-, and strike-slip terrains – Joints and unconformities – Penecontemporaneous deformational structures of sedimentary rocks. Plate tectonics – Concept and principles – Continental drift – Geological and geophysical evidences – Mechanics, objections and present status of plate tectonics.	12	CO2				
V	Gravity and magnetic anomalies at mid-oceanic ridges, deep sea trenches, continental shield areas and mountain chains – Geological and geophysical characteristics of plate boundaries – Geodynamic evolution of the Himalayas – Paleomagnetism – Sea floor spreading and plate tectonics – Island arcs, oceanic islands and volcanic arcs – Isostasy, orogeny and epeirogeny – Geodynamic of the Indian Plate.	12	CO2				
	Text Books						
	(Latest Editions)						
1.	Billings, M.P. (2014) <i>Structural Geology</i> . Prentice-Hall, J Delhi. 3 rd Edition. ISBN: 978-81-203-0059-03.	Inc., Learni	ng Pvt. Ltd.,				
2.	2. Beloussov, V.V. (1962). <i>Basic Problems in Geotectonics</i> . McGraw-Hill Book Co., New York.						
3	Badgeley, P.C. (1965) <i>Structural and Tectonic Principles</i> . Harper & Row Publishers, New York. ASIN: BOOBXTMTK6.						
4	4 Twiss, R.J. and Moores, E.M. (2007). <i>Structural Geology</i> . W.H.Freeman and Company, New York. 2 nd Edition. ISBN: 10: 0-7167-4951-						
5	B.A. van der Pluijm and S. Marshak (2004). Earth Structur Structural Geology and Tectonics (2nd ed.). New York: W ISBN 0-393-92467-X.	re - An Intro . W. Norton	oduction to n. p. 656.				
	References Books						
(La	test editions, and the style as given below must be strictly	adhered to	D)				
1.	Suppe, J. (1985) <i>Principles of Structural Geology</i> . Prentic Cliffs, New Jersey. ISBN: ISBN 0137105002.	e-Hall, Inc.	, Englewood				
2.	Marshak, S. and Mitra, G. (1988) <i>Basic Methods of Struct</i> Hall, Inc., Englewood Cliffs, New Jersey. ISBN: 01306517	tural Geolo 788.	gy. Prentice-				
3.	M. King Hubbert (1972). Structural Geology. Hafner Publi	ishing Com	pany.				
4.	G.H. Davis and S.J. Reynolds (1996). The structural geolo (2nd ed.) Wiley ISBN 0-471 52621 5	ogy of rocks	and regions				
5.	C.W. Passchier and R.A.J. Trouw (1998). Microtecto	onics. Berli	n: Springer.				
	Web Resources						
1.	http://www.labotka.net						
2.	http://www.patnasciencecollege.org						
3.	https://geomorphology.org.uk						
4.	https://gradeup.co						
5.	https://www.nps.gov>subjects>gla						

CO1: To gain knowledge about the geological structures like fold, fault, unconformity, foliation and lineation and its causes and mechanisms.

CO2: Gain knowledge on techniques of strain analysis

CO3: Student learn about the Methods of study of neotectonics

CO4: Student understand on Major tectonic features and associated structures in extensional-, compressional-, and strike-slip terrains – Joints and unconformities

CO5: Student gain knowledge on Gravity and magnetic anomalies at mid-oceanic ridges, deep sea trenches, continental shield areas and mountain chains.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	2	3	3	2
CO 2	3	3	3	2	3	3	2	3	3	2
CO 3	3	3	3	2	3	3	2	3	3	2
CO 4	3	3	3	2	3	3	3	3	3	2
CO 5	3	3	3	2	3	3	3	3	3	2

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		~						LS		Mark	s	
Subject Code	Subject Name	Categor	Т	Р	0	Credits	Inst. Hour	CIA	External	Total		
23GEOC202	Core V Applied Remote Sensing and GISCoreY							5	25	75	100	
	Course Objectives											
CO1	Understand the basics of remote sensing, electromagnetic radiation (EMR) and its properties, aerial photography and to list the important merits of these technology tools.											
CO2	Students will comprehend the core p earth objects, interaction of EMR wi by different satellite sensors includir (FCC) imagery.	Students will comprehend the core part of remote sensing i.e. spectral properties of earth objects, interaction of EMR with the atmosphere and the acquisition of data by different satellite sensors including the generate of False Color Composite (FCC) imagery.										
CO3	Based on the understanding of the basics, the students are expected to do thorough interpretation of aerial photographs and FCC imagery for the preparation of various thematic maps.											
CO4	Acquiring advanced skills on the asp Spatial Information Technology tool analysis on change detection, monito	bects of s, the st pring of	dig tude res	ital ents ouro	ima are ces	ige j exp etc.	proce	essin d to	g and do qu	d the uantita	tive	
CO5	Evaluate the importance of these tech and its way forward.	hnology	y to	ols	ove	r co	nven	ition	al tec	chniqu	es	
UNIT	Details						N H	lo. oi lour:	. of Course urs Objectives			
Ι	Fundamentals of remote sensing: History of remote sensing technology – Remote sensing system – Electromagnetic radiation – Spectral properties of terrestrial objects – Analysis of spectral reflectance curves – Types of satellites – Image acquisition – Multi- spectral scanners – Remote sensing resolution – Introduction to thermal remote sensing – Introduction to microwave remote sensing and new satellite sensors – Remote sensing in landform and land use mapping, structural mapping, coastal and ocean studies – Global and Indian space missions							12		CC	01	
Π	Aerial photography: Introduction – Vertical and oblique photographs – Photoscale – Image displacement due to relief – Parallax in aerial photographs – Aerial photographic procedures – Camera and flight requirement – Flight planning – Filters – Compensation – Stereoscopy – Photomosaics. Photographical studies –									CC	02	

	lithology, structures and landforms from aerial photographs.							
III	Image processing in remote sensing: Digital data recording – Digital data format. Introduction to digital image processing – Pre-processing techniques – Image classification methods – Image enhancement techniques.	12	CO2					
IV	Applications of remote sensing: Visual interpretation – Different sensors – Data and image interpretation key elements. Exercises on mapping of geology – Land use/land cover and geomorphology based on visual method – Preparation of base maps and transformation of thematic maps. Validation of remote sensing analysis output by ground truth – Accuracy, estimation and introduction to GPS technology.	12	CO2					
V	Fundamentals and application of GIS: Concept of GIS – GIS types – Data storage – Retrieval and analysis. GIS database organization and development – Combined use of remote sensing and GIS. Preparation of spatial decision support system (SDSS).Highlights on different applications using GIS tool with particular reference to Applied Geosciences and Ocean Science.	12	CO2					
	Text Books							
1.	Asrar, G. (1989) <i>Theory and Applications of Optical Rema</i> & Sons, New York.	ote Sensing	. John Wiley					
2.	Curran, P.J. (1984) Principles of Remote Sensing. Longma	n Group Lt	d.					
3	Lillesand, T.M., Kiefer, R.W. and Chipman, J.W. (2007 Image Interpretation. Wiley India, 763.	7) Remote	Sensing and					
4	Paul R. Wolf. (1986) <i>Elements of Photogrammetry</i> , McGr 628.	aw-Hill Bo	ok company.					
5.	Lasaponara, R. and Masini N. 2012: Satellite Remote See Archaeology. Remote Sensing and Digital Image Process 364 pp., ISBN 978-90-481-8801-7.	ensing - A sing Series,	new tool for Volume 16,					
~	References Books	. 11 . 1.						
(1	Latest editions, and the style as given below must be strictly Sabins, F.F. (1998) <i>Remote Sensing Principles</i>	adnered t	0) Iterpretation					
1.	W.H.Freeman& Co	unu 11						
2.	Agarwal, C.S. and P.K. Garg (2000) <i>Textbook on Rem</i> <i>resources monitopring and management</i> , Wheeler Publishi	Agarwal, C.S. and P.K. Garg (2000) <i>Textbook on Remote Sensing In natural</i> resources monitopring and management Wheeler Publishing 196						
3.	Campbell, J. B. (2002). Introduction to remote sensing Press. ISBN 978-1-57230-640-0.	(3rd ed.).	The Guilford					

1	Jensen, J. R. (2007). Remote sensing of the environment: an Earth resource								
7.	perspective (2nd ed.). Prentice Hall. ISBN 978-0-13-188950-7.								
5	Richards, J. A.; X. Jia (2006). Remote sensing digital image analysis: an								
5.	introduction (4th ed.). Springer. ISBN 978-3-540-25128-6.								
Web Resources									
1.	https://stratigraphy.org/								
2.	https://www.sepm.org/								
3.	https://www.geosocindia.org/								
4.	https://www.moes.gov.in/								
5.	https://isegindia.org/								

CO1: To gain the basic concept of remote sensing

CO2: Students study the Photogeology

CO3: Student get knowledge on Image processing in remote sensing

CO4: Students learn about the Applications of remote sensing

CO5: Students gain knowledge on Fundamentals and application of GIS

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	3	3	2	3	3	3	2	3	3
CO 2	S	3	3	3	3	3	3	3	3	3
CO 3	S	3	3	3	3	3	2	2	3	2
CO 4	S	3	3	3	2	3	3	3	3	3
CO 5	S	3	2	3	3	2	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3

Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester- II: Structural Geology & Geotectonics Practical and Petrology practical (Ist year)

								S	Marks		
Subject Code	Subject Name		L	Т	Р	0	Credits	Inst. Houn	CIA	External	Total
23GEOP203	Core VI Structural Geology & Geotectonics Practical and petrology practical	Core	Y	-	-	-	4	8	25	75	100
Course Objectives											
CO1	To identify and list out the issues and	d proble	ems	•							
CO2	To describe and explain the solution	to follo)W								
CO3	To identify various properties of rocks.										
CO4	To Understand petrogenetic aspects of important rock suites of India.										
CO5	To different between different structures. To conceive and conceptualize the solutions arrived at.										
	STRUCTURAL GEOLOGY										
UNIT	Details						N H	lo. oi Iour:	f 5	Cou Objec	rse tives
	Determination of attitude of be graphical and trigonometric projec nomograph methods.	eds – tions –	Ge Ta	eom ıbul	etri ar a	cal, and		12		CC)1
	Reconstruction of parallel fold and and analysis of structure contour mag	l fault p – Isop	– F pach	Prep 1s.	arat	ion		12		CC)2
Structural Geology	Construction of perpendicular and plunging fold. Geochronology – Pi Structural complex –	vertica and be	al s ta c	ecti liag	ons ram	of .s –		12		CC)2
Geology	Depth to strata – True thickness of of geological maps involving nor bore well data.		12		CC)2					
	Interpretation of geological maps in and asymmetrical fold, isoclinal for plunging fold, strike fault and step fa		12		CC	02					

	PETROLOGY PRACTICAL							
Petrology	Megascopic and microscopic study (textural and mineralogical) of the following igneous rocks: Granite, Syenite, Gabbro, Basalt, Peridotite, Pyroxenite, Dunite. Lamprophyres, Dolerite, Phonolite, Rhyolite, Trachyte, Andesite, Pitchstone, Anorthosite, Aplite, Pegmatite. Introduction to modal analyses of Granite, Basalt and Gabbro.	12	CO1					
	Megascopic and microscopic study (textural and mineralogical) of the following metamorphic rocks: Low grade metamorphic rocks: serpentinites, albite-epidote- chlorite-quartz schist, slate, talc-tremolite-calcite-quartz schist. Medium to high grade metamorphic rocks: Gneisses, amphibolite, hornfels, garnetiferous schists, sillimanite-kyanite-bearing rocks, Granulites, eclogite, diopside-forsterite marble. Laboratory exercises in graphic plots for petrochemistry and interpretation of paragenetic diagrams.	and microscopic study (textural and of the following metamorphic rocks: Low rphic rocks: serpentinites, albite-epidote- schist, slate, talc-tremolite-calcite-quartz m to high grade metamorphic rocks: phibolite, hornfels, garnetiferous schists, inite-bearing rocks, Granulites, eclogite, erite marble. Laboratory exercises in for petrochemistry and interpretation of agrams.						
	Megascopic and microscopic study (textural and mineralogical) of the following Sedimentary rocks: Sand stone, Lime stone, Conglomerate, Arkose, mud rocks.	12	CO2					
	Preparation of Thin sections – Grain size analysis – Statistical parameters in Sedimentology – Frequency and cumulative frequency distribution curves – Moment and graphic measures – Gravel analysis.	12	CO3					
	Text books							
1.	Brian Simpson. (1968). Geological Maps. Pergamon Press	Limited, O	xford.					
2.	Lisle, R.J. (1988). Geological Structures and Maps. Pergam	on Press, (Oxford.					
3	Gass, J.G., Butcher, N.E., Clark, P., Francis, P.W., Jacks Skipsey, E., Smith, P.J., Stevenson, J., Thorpe, R.S., Turr Wright, J.B. (1972). <i>Field Relations – A Second Level</i> (Open University Press, London.	Gass, J.G., Butcher, N.E., Clark, P., Francis, P.W., Jackson, D.E., McCurry, P., Skipsey, E., Smith, P.J., Stevenson, J., Thorpe, R.S., Turner, C., Wilson, R.C.L., Wright, J.B. (1972). <i>Field Relations – A Second Level Course in Science</i> . The Open University Press, London.						
4.	Structural geology, Billing. M.P. (1974), Prentice Hall, New	w Delhi						
5.	An outline of Structural Geology, Hobbs, B.E., Means, W (1976):, John Wiley, New York.	V.D. and V	Villiams, P.F					
6.	Vernon R. H. and Clarke G. L. 2008. Principles of m Cambridge publication.	netamorph	ic Petrology					
7.	John D. Winter 2001. An Introduction to Igneous and Meta	morphic P	etrology.					
8.	Wenk,H.R&A. Bulakh, Minerals, Cambridge University Pr	ress,New D	Delhi(2006)					
9.	Perkins D, 3rd ed. Prentice Hall India, NewDelhi(2010)							
10	Haldar, S.K. & I. Tisilar, Introduction to Mineralogy and Petrology, Elsevier (2014)							

References Books								
(La	test editions, and the style as given below must be strictly adhered to)							
	Bhattacharya, D.S. and Bagchi, T.C. (1973). Elements of Geological Map Reading							
1.	and Interpretation with Exercises. Orient Longman Limited, Calcutta.							
2	Gokhale, N.W. (2006). A Manual of Problems in Structural Geology. CBS							
Ζ.	Publishers and Distributors, New Delhi.							
3.	Basic Problems of Geotectonics Belousov.V.V. (1962):, McGraw Hill, New York							
4.	Structural Geology De Sitter. L.U. (1956):, McGraw Hill, New York							
5.	Elements of Structural Geology Hill. E.S. (1972):, John Wiley, New York							
	Web Resources							
1.	https://stratigraphy.org/							
2.	https://www.sepm.org/							
3.	https://www.geosocindia.org/							
4.	https://www.moes.gov.in/							
5.	https://isegindia.org/							

- CO1: Students workout on the determination of attitude of beds.
- CO2: Student gain knowledge on preparation and analysis of structure contour maps.
- CO3: Students learn about the Construction of perpendicular and vertical sections of plunging fold.
- CO4: Study the Megascopic and microscopic study for igneous rocks.
- CO5: Preparation of Thin sections.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	2	3	1	3	2	3	1	1
CO 2	3	3	2	3	1	3	2	3	1	1
CO 3	3	3	2	3	1	3	2	3	1	1
CO 4	3	3	2	3	1	3	2	3	1	1
CO 5	3	3	2	3	1	3	2	3	1	1

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

								2 Marks							
Subject Code	Subject Name	T Categor		Т	Р	0	Credits	Inst. Hour	CIA	External	Total				
23GEOE204	Elective – III Applied Petrology	Elec tive	Y	-	-	-	3	4	25	75	100				
	Course Obje	ectives													
CO1	Understanding the basics of the Earth as a System.														
CO2	D2 To analyze various magmatic compositions to understand the formation of various igneous rocks.														
CO3	To comprehend the genesis of metamorphic rocks.														
CO4	To understand the formation of sedin environments and provenance	nentary	y roo	cks,	the	ir de	epos	ition	al						
CO5	Understanding the complete system	of the H	Eart	h											
UNIT	Details						N H	lo. o Iour	f s	Cou Objec	rse tives				
Ι	Forms, textures and structures Petrology and geotectonic evolution andesites and alkaline rocks. Pe kimberlites, anorthosites and ca primary basic magmas. Classificati Steady-state geotherms. Ge	of ig n of gra trology rbonati on of i nesis,	neo anite of tes.9 gne	us es, l ga Orig ous proj	roc pasa abbi gin roc pert	eks. Ilts, ros, of eks. ies,		12		СС	01				

	emplacement and crystallization of magmas. Phase equilibrium studies of simple systems, effect of volatiles on melt equilibria. Magma -mixing, - mingling and - immiscibility. Generation of magmas. Factors affecting their evolution and their relation to plate tectonics– Magmatic differentiation and Assimilation. Variation diagrams		
Π	Silicate melts equilibria, binary and ternary phase diagrams. Experimental Petrology - Phase equilibrium of binary and ternary silicate systems and its petrological implications – Effect of Pressure on silicate systems – Trace elements in magmatic crystallization – Trace element modelling. Petrogenetic aspects of important rock suites of India, such as the Deccan Traps, layered intrusive complexes, anorthosites, carbonatites, charnockites, alkaline rocks, Kimberlites, ophiolites and granitoids.	12	CO2
III	Basic Concepts of Metamorphic Petrology – Types of metamorphism – agents of metamorphism – Zones and grades. Facies concept of metamorphism. Graphical Representation of metamorphic paragenesis Petrogenesis of important metamorphic rocks – charnockite – eclogite – amphibolite – migmatites – Khondalites – metamorphic belts Textures and structures of metamorphic rocks. Regional and contact metamorphism of pelitic and impure calcareous rocks.Mineral assemblages and P/T conditions. Experimental and thermodynamic appraisal of metamorphic reactions. Characteristics of different grades and facies of metamorphism. Metasomatism and granitization, migmatites.Plate tectonics and metamorphic zones. Paired metamorphic belts. Mineral reactions with condensed phases, solid solutions, mixed volatile equilibria and thermobarometry.	12	CO2
IV	Earth Surface System: Liberation and flux of sediments, Processes of transport and generation of sedimentary structures, Control on the sedimentary record, Cyclic Sediments, – Classification of sedimentary rocks – Definition, measurements and interpretation of grain size. Evolution of Sedimentary Basins: Classification and definition of Sedimentary basins, Tectonics and Sedimentation – Plate tectonic concepts – Sedimentary basins of India – Paleocurrent and Basin analysis – Provenance and Diagenesis of sediments.	12	CO2
V	Sedimentary environments and facies, Continental alluvial – fluvial, lacustrine, desert – Eolian and Glacial	12	CO2

	· · · · · · · · · · · · · · · · · · ·							
	sedimentary systems; Shallow Coastal Facies, Marine							
	and Continental Evaporates; Shallow water Carbonates;							
	Deep sea basins; Volcanoclasts Petrography of rocks of							
	Clastic, Chemical and Biochemical origin, Clastic							
	Petrofacies, Paleoclimate and Paleoenvironment							
	analyses; Application of trace elements, Rare-earth							
	elements and Stable isotope geochemistry to							
	sedimentological problems. Depositional environments							
	and systems. Paleocurrent analysis.							
	Track Databas							
1	I ext Books							
1.	Philpotts, A., 1992, Igneous and Metamorphic Petrology, Prentice Hall.							
2.	Turner, F.J., 1980, Metamorphic Petrology, McGraw Hill., New York.							
3.	Best M.G,Igneous Petrology.Wiley.NewDelhi(2005)							
4.	Hatch,F.H. et al,Petrology of the Igneous Rooks, CBSDelhi.							
5.	Hyndman D.W, Petrology of the Igneous and Metamorphic Rocks McGrawHill.NewYork(1985)							
	References Books							
(La	itest editions, and the style as given below must be strictly adhered to)							
1.	Bose, M.K., 1997, Igneous Petrology., World Press.							
2.	Bucher, K and Frey, M., 1994, Petrogenesis of Metamorphic Rocks, Springer – Verlag.							
3.	Winter, J.D, Principles of Igneous and Metamorphic Petrology, PHI.New							
4.	Middlemost E.A.K, Magmas and Magmatic Rocks.Longman UK(1985)							
5.	Winkler, H.G.F, Petrology of the Metamorphic Rocks. Springer, New Delhi (1970)							
	Web Resources							
1.	https://minerva.union.edu/hollochk/c-petrology/resources.html							
2.	https://topex.ucsd.edu/es10/lecture/lecture10/lecture10.html							
3.	https://geology.com/rocks/igneous-rocks.shtml							
4.	https://course.lumenlearning.com/wmopen-geology/chapter/outcome- metamorphic-rocks/							
5.	https://serc.carleton.edu/NAGTWorkshops/coursedesign/goalsdb/10875.html							

CO1:To gain knowledge about the study of rocks - igneous, metamorphic, and sedimentary - and the processes that form and transform them.

- CO2: Students gain on Silicate melt equilibria, binary and ternary phase diagrams.
- CO3: students learn about the Basic Concepts of Metamorphic Petrology
- CO4: Students learn Definition, measurements and interpretation of grain size

CO5: Students get knowledge on Sedimentary environments and facies.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	3	3	3	2	3	1	3
CO 3	3	3	3	3	3	3	2	3	3	3
CO 4	3	3	3	3	3	2	3	3	3	3
CO 5	1	1	2	3	3	3	2	1	2	2

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

								S	Marks		
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
22CEOE205	Elective paper IV	Elec	v				2	4	25	75	100
23GEUE205	Environmental Earth Science	tive	I	-	-	-	5	4	23	15	100
	Course Objectives										
CO 1	To identify knowledge on various ty	pes of	env	viro	nme	ental	l issı	ies ii	n rela	tion t	o the
COT	Earth as a System										

CO 2	To explain the various causes of pollution								
CO 3	To explain the various types of pollution								
CO 4	To select the remedial measures to be taken as an individual and a group								
CO 5	Understanding the dynamics of the Earth								
UNIT	Details	No. of Hours	Course Objectives						
Ι	Concept of environment – Environmental monitoring – Water as a resource, Water pollution – Point and non- point pollution sources – Ground water pollution.	12	CO1						
Π	Air pollution – Natural and anthropogenic sources of air pollution – Primary and secondary air pollutants – Anthropogenic activities and air pollution – Indoor air quality – Biological sources of indoor pollution – Health effects – Air quality standards – Case histories – Air quality monitoring – Acid rain – Adverse effects of acid rain – Health effects – Mitigation measures – Roles and responsibilities.	12	CO2						
III	Smog – Mechanism of smog formation – Health disorders – Photochemical smog – Ozone and PAN formation – Health effects – Catalytic converters – Greenhouse gases and effect – Processes of removal of greenhouse gases.	12	CO2						
IV	Methods of waste disposal – Landfills – Trash compactors – Incineration – Recycling – Biological processing – Mulch and compost – Energy production – Waste reduction – Waste handling and transport – Waste management – Concept of waste hierarchy – Education and awareness.	12	CO2						
V	Medical geology – Problems associated with fluoride, arsenic, asbestos, mercury, chromium, cadmium, zinc, copper and lead contamination – Alternate energy resources – Climate change.	12	CO2						
	Text Books								
1.	Fair bridge, R.W. (1972) <i>Encyclopedia of Geochemistry an Science</i> . John Wiley.	d Environi	nental						
2.	Keller, Edward A. (1996) Environmental Geology. New Jer	rsey: Prent	ice-Hall						
3.	Coppola D.P, Introduction to International Disaster Manage Heinemann(2007)	ement, But	terworth						
4.	Pine,J.C, Natural Hazards Analysis: Reducing the Impact of Disasters, CRC Press, Taylor and Francis Group(2009)								
5.	Smith K, Environmental Hazards: Assessing Risk and Reducing Disaster Rout ledge Press(2001)								

	References Books									
(La	(Latest editions, and the style as given below must be strictly adhered to)									
	Strahler, A.N. and Strahler, A.H. (1973) Environmental Geoscience – Interaction									
1.	between Natural Systems and Man. Hamilton Publishing Co., Santa Barbara,									
	California.									
2.	Kudesia, V.P. (1980) Water Pollution. Pragathi Prakasam, Meerut.									
3	Groundwater Assessment Development and Management, Karanth.K.R. (1987)									
5.	Tata McGraw Hill Publishing Company, Ltd.									
4.	Miller T.G. Environmental Science. Wadsworth Publishing.US(2004).									
5.	Coates, D.R. Environmental Geology. McGraw Hill.NewYork(1984)									
	Web Resources									
1.	https://www.britannica.com/science/geology/sedimentary-petrology									
2.	https://limk.springer.com/chapter/10									
3.	https://www.geo.mtu.edu/UPSeis/hazards.html									
4.	https://www.omafra.gov.on.ca/english/engineer/facts/									
5.	https://geology.com/rocks/rock-salt.shtml									

- **CO1:** To know the basic knowledge about the Climate: Classification, Global warming and climate change
- CO2: Student gets knowledge on Pollution Monitoring studies.
- CO3: Studnets know about the Environmental Health hazard.
- CO4: Students learn the Waste management studies.
- CO5: Student get involved in Medical geology applications.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	1	2	3	3	1	2	2 3	
CO 2	3	2	1	2	3	3	1	2	2	3
CO 3	3	2	1	2	3	3	1	2	2	3
CO 4	3	2	1	2	3	3	1	2	2	3
CO 5	3	2	1	2	3	3	1	2	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

								Ś		Mark	S
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
23GEOS206	Skill Enhancement course - 1 Introduction to Geological Software	SEC	Y	-	-	-	2	4	25	75	100
	Course Objectives										
CO 1	To gain knowledge on various geolo	gical so	oftw	vare							
CO 2	To practice with IGPET, WATEQ4F	7									
CO 3	To get hands on training with PHRE	EQC a	nd N	MOI	DFI	LOV	V				
CO 4	To apply geostistical software in data	a interp	reta	tior	1						
CO 5	To understand applications of the geological data	softwa	are	use	ed i	n t	he i	nterp	oretat	tion o	f the
UNIT	Details						N H	lo. oi Iour:	f s	Cou Objec	rse tives
Ι	Interpretation and analysis of Geological data using MS- office, IGPET, WATEQ4F						12		CO1		
II	Applications, Principles of data interpretation in software like	input PHI	, p Ree	oroc EQC	essi	ng, and		12		CC	02

	MODFLOW							
III	ARCGIS, Mapinfo for spatial analysis and integration of complex geological and geophysical data. ERDAS IMAGINE as image-processing tools for analyzing remotely sensed data.							
IV	Overview of geostatistical analysis using statistical package SPSS, Graphical analytical packages like Surfer and RockWorks for both 2-D surfaces.	12	CO2					
V	Data Interpretation: Toposheets, Aerial photographs, Satellite imageries. Interpretation of Meteorology data: rainfall, temperature, wind, humidity; Interpretation of borehole logs, litho log, SP log, Resistivity log, Gamma log, neutron log.	12	CO2					
	Text Books							
1.	1.Wen-Hsing Chaing & Wolgang Kinzelbach "User Manual for Processing MODFLOW", windows version 4.0.1996.							
2.	 2.Sharon L. Qi, Jennifer B. Sieverling using ArcInfo to fact modeling of ground water flow,1997 	ilitate nume	erical					
3.	3.Hill Mc(1992) MODFLOW – A computer program for ea a transient, 3-D, Ground flow model using non linear regre Survey, open-file report – 91-484.	stimating p ssion, U.S.	arameters of Geological					
4.	Pine, J.C, Natural Hazards Analysis: Reducing the Impact of Taylor and Francis Group(2009)	of Disasters	, CRC Press,					
5.	Smith K, Environmental Hazards: Assessing Risk and Red ledge Press(2001)	ucing Disas	ster Rout					
	References Books							
(La	atest editions, and the style as given below must be strictly	adhered to	0)					
1.	ERDAS: IMAGE 2018, Version 16.5(V 16.5.0.82)	1						
2.	PHREEQC Ver.1: Ground water & pollution, II E Publication, Leiden. The Parkhurst, D.L., 1995, user's guide	PHREEQC Ver.1: Ground water & pollution, II Edition: A.A. Balkana. Publication, Leiden. The Parkhurst, D.L., 1995, user's guide to PHREEQC.						
3.	Groundwater Assessment Development and Management, Karanth.K.R. (1987) Tata McGraw Hill Publishing Company, Ltd.							

CO1: Gain the knowledge of computer softwares in geology

CO2: Gain the knowledge of applications and interpretation of computer software.

CO3: Students know various geological software.

CO4: Students learn the rockworks and 2d software

CO5: Student get involved in system based analysis.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	1	2	3	3	1	2	2	3
CO 2	3	2	1	2	3	3	1	2	2	3
CO 3	3	2	1	2	3	3	1	2	2	3
CO 4	3	2	1	2	3	3	1	2	2	3
CO 5	3	2	1	2	3	3	1	2	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III: (Second year)

								S	Marks			
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total	
23GEOC301	Core VII Geophysics	Core	Y	I	I	-	5	6	25	75	100	
Course Objectives												
CO 1	Student will able to apply geophy minerals, ground water, oil and n	ysical n atural g	neth gas :	ods resc	for ourc	exp es.	olori	ng hi	dden	ore		

CO 2	Explain the principles behind different geophysical sur-	veying tech	niques.						
CO 3	Process, analyze and interpret gravitational, magnetic a surveying data.	nd electron	nagnetic						
CO 4	Understand the earth subsurface using electrical resistiv	Understand the earth subsurface using electrical resistivity.							
CO 5	Describes the subsurface of the Earth in physical terms – density, electrical resistivity, magnetism, conductivity, and heat flow.								
UNIT	Details	No. of Hours	Course Objectives						
Ι	Introduction – Physical basis of geophysical exploration, various surface and sub-surface methods and their classification. Physical properties of rocks and minerals exploited in exploration and factors that control them. Geophysical anomaly, Radioactivity of rocks and ores, radioactive minerals and ores. Radiation measuring devices – Ionization chambers, gas filled (Geiger Möller) counters, scintillation counters, radiometers and γ ray spectrometers. Field radiometric methods – Air-borne surveys, automobile surveys, foot surveys.Processing and interpretation of field data.Application of radiometric methods.	12	CO1						
II	Gravity Prospecting: Gravity prospecting – Principles, the Earth's gravitational field and units, its variation, Newton's Law – Geoid, spheroid and normal gravity field, figure of earth. Order of anomalies produced by geological discontinuities, absolute and relative measurement of gravity, gravimeters and their operation in the field. Field procedure, reduction and correction of gravity field data, separation of regional and residuals, upward and downward continuation, interpretation of gravity data obtained over spherical and cylindrical objects, sheet, dike and faults – Applications of gravity methods.	12	CO2						
III	Electrical methods – Electrical properties of earth materials – Conduction in rocks, conduction in water- bearing rocks, description of geoelectric sections, classification of electrical methods. Resistivity method – Ohm's Law, resistivity, factors affecting resistivity, effect of homogenous earth, various configurations for resistivity methods, configuration factor, response over a layered earth. AC and DC type resistivity meters, field procedure for electrical profiling and sounding, logarithmic curve matching, advantages of plotting the	12	CO2						

	data on a logarithmic graph paper. Interpretation of profiling and sounding field data, use of modelling in electrical methods, introduction to self-potential, induced polarization methods.					
IV	Seismic methods – Fundamentals of elasticity – Young's modulus, Bulk modulus, Poisson's ratio, elastic waves, laws of reflection and refraction, Huygen's principle, Fermat's principle, Principle of superposition, Seismic wave theory – Helmhotz's theorem and seismic wave propagation – Body and surface waves – Primary, Secondary, Rayleigh and Love waves – Seismic energy sources – Detectors – Seismic noises and noise profile analysis – Reduction to a datum and weathering corrections - Short period, long period, broad band and strong motion – Seismic instruments – Seismic channel – Details of geophones – Filters, Amplifier and reproducible and non-reproducible recording – Seismic timer field layout – Arc shooting – Fan shooting – Profile shooting	12	CO2			
V	Data processing – Corrections applied to seismic field data , Simple interpretation of field data – Seismic refraction and reflection data processing – Applications.	12	CO2			
1.	Text Books Keller, G.V. and Frischknecht, F.C. (1982) Electrical Meth Prospecting. Pergamon Press, New York.	ods inGeor	bhysical			
2.	Rama Rao, B.S. and Murthy, I.V.R. (1978) Gravity and Ma Prospecting. Arnold Heinemann Publishers, New Delhi	agnetic Met	hods of			
3.	Davies, Geoffrey F. (2001). Dynamic Earth: Plates Convection. Cambridge University Press. ISBN 0-521-590	, Plumes 67-1.	and Mantle			
4.	Bozorgnia, Yousef; Bertero, Vitelmo V. (2004). Earthqu Engineering Seismology to Performance-Based Engineerin	ake Engin g. CRC Pre	eering: From ess.			
5.	5. Pedlosky, Joseph (1987). Geophysical Fluid Dynamics (Second ed.). Springer- Verlag. ISBN 0-387-96387-1.					
	References Books	adh an 14	a)			
(Latest editions, and the style as given below must be strictly adhered to)						
1.	New Delhi.	pecting. Mic	Olaw-IIII,			
2.	Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys Geophysics. Oxford-IBH Publishing Co. Pvt. Ltd., New De	, D.A. (19 elhi	976) Applied			
3.	3.Hardy, Shaun J.; Goodman, Roy E. (2005). "Web resources in the history of geophysics". American Geophysical Union. Archived from the original on 27 April 2013. Retrieved 30 September 2011.					
4.	Kivelson, Margaret G.; Russell, Christopher T. (1995). Physics. Cambridge University Press. ISBN 978-0-521-45	Introducti 714-9.	on to Space			
	35					

5.	Lowrie, William (2004). Fundamentals of Geophysics. Cambridge University Press. ISBN 0-521-46164-2
	Web Resources
1.	https://iugg.org/associations-commissions/commissions/sedi/
2.	https://iugg.org/
3.	https://www.usgs.gov/programs/geomagnetism
4.	https://www.udemy.com/course/learn-seismic-data-processing/
5.	https://seg.org/Default.aspx?TabId=176&language=en-US

CO1: Student can learn in detail about the Gravity and gravity anomalies, gravity survey, gravity map preparation

CO2: Magnetic fields, magnetic behavior of rocks, magnetic methods – anomalies, preparation of magtnetic anomaly maps

CO3: Thermal and electrical properties of rocks, resistivity method

CO4: Application of electrical method in groundwater exploration

CO5: Seismic method, wave propagation principles, seismic data interpretation.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	2	2	3	2
CO 4	3	3	3	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15

Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course contribution to Pos	5.0	5.0	5.0	5.0	5.0

								S		Mark	S
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
23GEOC302	Core VIII Hydrogeology	Core	Y	-	-	-	5	5 6 25 75 10			100
	Course Objectives							1			
CO 1	To define different terms and parameters	eters in	vol	ved	in I	Hyd	roge	olog	у		
CO 2	To enumerate the concept and to inte	erpret tl	he p	roc	esse	es ir	volv	ved ir	n gro	oundwa	ater
CO 3	To describe the importance of groun groundwater	dwater	anc	l su	mm	aris	e the	0000	urrei	nce of	
CO 4	To interpret the conditions of water groundwater is being exploited again	resourc	es a natu	nd i Iral	to so law	elec s	t sor	ne ar	eas	where	the
CO 5	To critically assess different factors/	o critically assess different factors/aspects involve									
UNIT	Details						N H	lo. of lours	f S	Cou Objec	rse tives
Ι	Introduction to Hydrogeology: Water on Earth - Types of water - Distribution of water - Hydrological cycle and its components: precipitation, evaporation, evapotranspiration, infiltration, surface runoff and sub- surface distribution and movement of ground water and their estimation for the purpose of assessing water availability. Water-bearing properties of rock formations: aquifer- isotropic and anistropic, porosity, permeability,					12		СС	01		
II	Occurrence and movement of Groundwater: Vertical distribution of groundwater: zone of aeration and zone of saturation – Geological formations as aquifers – Springs - Darcy's experiment and its limitations, fluid pressure, hydraulic conductivity, transmissitivity – Reynolds Number - Barometric and tidal efficiency of aquifers – Ground water flow- Groundwater flow direction – Unsaturated flow –Steady and unsteady state flow.12						02				
III	Unsaturated flow –Steady and unsteady state flow.Water wells: Types of wells - Well hydraulics – Cone of depression, radius of influence, drawdown and specific capacity - Drilling of shallow wells and deep wells – Well Completion – Well development – Testing wells12CCfor yield- Protection and rehabilitation of well- Collector wells and Infiltration galleries - Tracer tests and slug tests - Ground water budgeting – Ground water levels12					02					

	and material many forfamilia and Carina time		
	and water level maps – Safe yield and Conjunctive uses		
	- Artificial fecharge and methods.		
IV	Groundwater Quanty and Pollution: Chemical constituents in groundwater: sources and effects - Quality criteria for different uses -Geochemical cycle of surface water and ground water- Graphical presentation of groundwater quality data- Dissolved gases in groundwater- Impact of solar energy on groundwater – Sources and causes for pollution of groundwater – Pollution attenuation – Treatment for contaminated groundwater.	12	CO2
V	Exploration techniques and Saline water intrusion :Methods for exploration of ground water – Geologicalmethods, Remote Sensing techniques, geomorphologicalinputs, gravity, magnetic, seismic and electrical methods– Basics of ground water modeling – Physical, analogand mathematical models, finite difference modeling –Hydrogeology of arid zones of India – Hydrogeology ofwetlands. Hydrodynamic equilibrium of fresh and salinewater – Ghyben-Herzberg relation- Control of salinewater intrusion.	12	CO2
	Text Books	1	1
1.	Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prenti	ce-Hall. Lo	ndon.
2.	Fetter, C. W. (2018). <i>Applied Hydrogeology</i> .Wa 9781478637448. 4 th Edition. E-Book.	veland P	ress. ISBN:
3.	De Marsily, G., 1986. Quantitative Hydrogeology: Grou Engineers, Academic Press, Inc., Orlando Florida. — Cl engineers with mathematical background but it can be re geologists as well. ISBN 0-12-208916-2	indwater H lassic book ead by hyd	lydrology for intended for rologists and
4.	LaMoreaux, Philip E.; Tanner, Judy T, eds. (2001), Sprin the world: Ancient history, source, occurrence, qua Heidelberg, New York: Springer-Verlag, ISBN 3-540-61 overview of hydrogeological processes.	ngs and bot ality and 841-4 Goo	tled water of use, Berlin, od, accessible
5.	Porges, Robert E. & Hammer, Matthew J., 2001. Hydrogeology, National Ground Water Association, Written by practicing hydrogeologists, this inclusive handl easy-to-use reference for hydrologic terms, equatio parameters, and acronyms	The Com , ISBN 1- book provid ons, pertin	pendium of 56034-100-9. des a concise, ent physical
	References Books		
	(Latest editions, and the style as given below must be strictly	<u>adhered</u> t	0)
1.	Todd, D.K. and Mays, L.W. (2013) <i>Groundwater Hydrology</i> .Jo York. ISBN: 978-81-265-3003-8. 3 rd Edition.	ohn Wiley a	& Sons, New
2.	Davis and DeWeist. (1966). Geohydrology. John Wiley & Sons,	New York.	
3.	Domenico, P.A. & Schwartz, W., 1998. Physical and Chemica Edition, Wiley. — Good book for consultants, it has many re- covers additional topics (e.g. heat flow, multi-phase and unsatur 59762-7	l Hydroged eal-world e ated flow).	blogy Second examples and ISBN 0-471-

	Practical book illustrating the actual process of drilling, developing and utilizing water					
	wells, but it is a trade book, so some of the material is slanted towards the products					
made by Johnson Well Screens. ISBN 0-9616456-0-1						
	Anderson, Mary P. & Woessner, William W., 1992 Applied Groundwater Modeling,					
5. Academic Press. — An introduction to groundwater modeling, a little bit old, but the						
methods are still very applicable. ISBN 0-12-059485-4						
	Web Resources					
1.	https://iah.org/					
2.	http://www.groundwateruk.org/					
3.	https://gw-project.org/books/groundwater-resource-development.					
4.	https://www.epa.gov/dwreginfo/drinking-water-regulations.					
5.	https://www.guidelinegeo.com/groundwater-prospection					

CO1: This study helps to understand the Hydrological cycle, Aquifer; flow rates and flow directions, Groundwater fluctuation: types, controlling factors

- CO2: Occurrence and movement of Groundwater
- CO3: Groundwater wells, types and methods
- CO4: Groundwater chemistry: Components of groundwater Groundwater pollution: Arsenic, fluoride and Nitrate

CO5 Salinity in Groundwater, Seawater intrusion and Ghyben-Herzberg Relation

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	1	2	3	3	3	2
CO 2	3	3	3	2	1	2	2	3	3	2
CO 3	3	3	3	2	2	3	2	3	3	3
CO 4	3	3	3	3	2	3	2	3	3	3
CO 5	3	3	3	3	2	3	2	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3

CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

								S		Marks		
Subject Code	Subject Name	T Categor	Т	Р	0	Credits	Inst. Houn	CIA	External	Total		
23GEOP303	Core IX Geophysics Practical	Core	Y	-	-	-	5	6	25	75	100	
	Course Obje	ectives										
CO1	To describe the different geophysical methods											
CO2	To identify the groundwater potentia	l zone	by r	resis	tivi	ty s	urve	у				
CO3	Understand gravity survey											
CO4	To interpret magnetic data											
CO5	To preparation of geophysical maps											
UNIT	Details		N H	No. of Hours C			Course Objectives					
Ι	Electrical Resistivity methods: Inter- electrical sounding data obtained or earth using the S-line, curve matching chart method – Field demonstration SP and magnetic prospecting technic	erpretativer 2- ag and a of resis	ion and auxi tivi	of v 3-l liar ty, s	aye aye y po seisi	red pint nic		12		CC	01	
II	Gravity Methods: Computation of g a sphere – Exercises on drift corre- regional and residual of gravity da- gravity data – Calibration of Interpretation of field magnetic Interpretation of seismic refraction of and 3-layered earth – Computati- constant.	ver of - ke. 2- ion	r f f - 12 C			CC)2					
Ш	Magnetic methods: Magnetic, me applications.	ethods	pro	bler	ns a	and		12		CC)2	

		-							
13.7	Seismic methods: Seismic survey data interpretaions,	10	$\mathcal{C}\mathcal{O}\mathcal{O}\mathcal{O}$						
IV	problems and applications.	12	02						
	Preparation of geophysical anomaly maps, Isoresistivity								
V	maps.	12	CO2						
	Text Books								
1	Brooks, A.R. (1972), Geobotany and Biogeochemistry	in mineral	exploration,						
1.	Harper and Row.		1 /						
2.	2. D.A. Cox, (1995), The elements of Earth, Oxford University Press, New York								
2	Dobrin, M.B. (1960), Introduction to Geophysical prospecting, , Mc Graw Hill								
з.	Book Co., New Delhi.	•							
4	Mathew N.O,Sadiku, 2007.Elements of Electromagnetics,., Fourth edition,								
4.	Oxford University Press.								
F	Parasnis, D.S. (1975). Principles of Applied Geophysics, Chapman and Hall.								
5.	Pacal, 2nd Ed. 1977.								
	References Books								
(Lat	test editions, and the style as given below must be strictly	adhered to	0)						
1.	Govett, G.J.S. (Ed) (1983). Handbook of Exploration Geod	chemistry, E	Elsevier						
2	Hawkes, H.E. and Webb, (1965), Geochemistry in Mineral Exploration, Harper								
۷.	and Row Publishers.								
	Web Resources								

- CO1: The student will be able to understand the Electrical Resistivity methods
- CO2: Understand the application of near surface geophysical techniques for aquifer characterization.
- CO3: Student gain knowledge on Interpretation of field magnetic data
- CO4: Students get knowledge on Magnetic, methods problems
- CO5: Student learn about Isoresistivity maps.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	2	2	3	3	3
CO 2	3	3	3	3	3	2	3	3	3	3
CO 3	2	3	3	3	3	1	2	3	3	3
CO 4	2	3	3	3	3	1	2	3	3	3
CO 5	2	3	3	3	3	1	2	3	3	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

								S		Mark	s
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Houn	CIA	External	Total
23GEOP304	Core X Applied Hydrogeology Practical	Core	Y	-	-	-	4	5	25	75	100
	Course Obje	ectives									
CO1	To gain knowledge on aquifer param	neters									
CO2	To understand flow discharge metho	To understand flow discharge methods									
CO3	Understand how groundwater infiltrates and flows through Earth materials										
CO4	To interpret groundwater flow direction from the topographic features										
CO5	To critically assess the quality of gro	oundwa	ter								
UNIT	Details						No. of Co Hours Obj			Cou Objec	rse tives
Ι	Aquifers and Aquitards: Factors affecting infiltration and ground water flow: Porosity – Permeability - Grain size – Specific yield – Specific retention – Hazen method for Hydraulic conductivity – Storativity.							12 CO1			
П	Groundwater flow: Specific dischar velocity – Flow net – Flow across unidirectional flow – Unsteady radia	Groundwater flow:Specific discharge – Average linearvelocity – Flow net – Flow across water table –Steady12unidirectional flow – Unsteady radial flow.12)2
III	Water chemistry: Solubility -	-Ionic	str	eng	th	of		12		CC	02

	groundwater - Trilinear diagram – Oxidation potential <i>Eh.</i>											
	Laboratory:											
	Chemical analysis of major dissolved constituent of											
	groundwater by titrimetric method											
	Chemical analysis of major dissolved constituent of											
	Chemical analysis of major dissolved constituent of											
	groundwater by spectrophotometric method.	10										
IV	Chemical analysis of major dissolved constituent of	groundwater by flame photometric method										
	groundwater by flame photometric method.											
	Determination and calculation of Water quality											
	parameters pH, EC, TDS.											
	Calculation of SAR, TH, NCH, TDS, EC and											
	interpretation for various uses											
	Laboratory:											
X 7	Uses of Multiparameter – On field water parameter	10	602									
v	analysis techniques – Preparation of standards for	12	02									
	analysis.											
	Text Books											
1.	Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice	ce-Hall. Lo	ndon.									
2	Fetter, C. W. (2018). Applied Hydrogeology.Waveland Press. ISBN:											
2.	9781478637448. 4 th Edition. E-Book.											
	De Marsily, G., 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers Academic Press Inc. Orlando Elorida Classic book intended for											
3.	Engineers, Academic Press, Inc., Orlando Florida. — Cl	assic book	intended for									
	reclogists as well ISBN 0-12-208916-2	ead by flyd	tologists and									
	LaMoreaux Philip F : Tanner Judy T eds (2001) Sprin	ngs and hot	tled water of									
	the world: Ancient history, source, occurrence, quality and	and use, Berlin, Heidelberg,										
4.	New York: Springer-Verlag, ISBN 3-540-61841-4 Good. accessible overview of											
	hydrogeological processes.											
	Porges, Robert E. & Hammer, Matthew J., 2001.	The Con	pendium of									
	Hydrogeology, National Ground Water Association, ISBN	1-56034-1	00-9. Written									
5.	by practicing hydrogeologists, this inclusive handbook provides a concise, easy-to-											
	use reference for hydrologic terms, equations, pertinent p	physical par	rameters, and									
	acronyms											
(T -	Kelerences Books	adharad +	a)									
(La	Todd DK and Mays I W (2013) Groundwater Hydrol	autereu t	u) ilev & Song									
1.	New York ISBN: 978-81-265-3003-8 3 rd Edition	<i>y</i> y.joini w	ney & Sons,									
	Domenico, P.A. & Schwartz, W., 1998, Physical and C	Chemical H	Ivdrogeology									
	Second Edition. Wiley. — Good book for consultants.	it has mar	iv real-world									
2.	examples and covers additional topics (e.g. heat flow, multi-phase and unsaturated											
	flow). ISBN 0-471-59762-7	•										
	Driscoll, Fletcher, 1986. Groundwater and Wells, US Filte	er / Johnson	n Screens. —									
3	Practical book illustrating the actual process of drilling, developing and utilizing											
5.	water wells, but it is a trade book, so some of the material is slanted towards the											

	Anderson, Mary P. & Woessner, William W., 1992 Applied Groundwater								
4.	Modeling, Academic Press. — An introduction to groundwater modeling, a little								
	bit old, but the methods are still very applicable. ISBN 0-12-059485-4								
Web Resources									
1.	https://iah.org/								
2.	https://gw-project.org/books/groundwater-resource-development/								
3.	https://info.aquaclara.org/what-are-the-most-common-water-contaminants								
4.	https://www.usgs.gov/mission-areas/water-resources								

CO1: The student will be able to understand aquifer parameters calculation.

CO2: Understand the significance of groundwater flow

CO3: Student gain knowledge on groundwater quality plots

CO4: student get knowledge on Aquifers and Aquitards studies

CO5: Student learn about Water quality analysis techniques.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	2	2	3	3	3
CO 2	3	3	3	3	3	2	3	3	3	3
CO 3	2	3	3	3	3	1	2	3	3	3
CO 4	2	3	3	3	3	1	2	3	3	3
CO 5	2	3	3	3	3	1	2	3	3	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

								Ś		Mark	s	
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total	
23GEOE305	Elective V Economic Geology	Elec tive	Y	-	-	-	3	4	25	75	100	
	Course Obje	ectives							1			
CO1	To provide knowledge on economica	ally rele	evar	nt m	ine	rals	and	meta	ıls			
CO2	To explain the Ore genesis responsib	ole for t	he e	ecor	nom	ic d	epos	sits				
CO3	To provide practical knowledge on t	he min	erals	s an	d m	etal	S					
CO4	Detail on the methods applied for m	ineral e	xplo	orat	ion							
CO5	To summarise the radioactive minera	al depo	sits									
UNIT	Details	N H	lo. o Iour	f s	Cou Objec	rse tives						
Ι	Ore Genesis. Ore deposits and ore processes of mineralization. Po- hydrothermal mineralization. Fluid sedimentary, supergene end Mineralisation associated with – (i) acidic rocks (ii) greenstone be anorthosites and kimberlites an volcanism. Magma related min geological time. Stratiform and str and metamorphism – cause ar Metallogeny and mineral belts. SedE	minera rphyry d inclu richmer ultrama lts (iii nd (iv neraliza ratabou nd eff	als. sion nt, ffic,) 1 7) tion nd ect	Ma karn n s ma kom sub t sub t cores rel	gma n a tud plac fic a atii mar hrou a. C latic	atic and ies, cer. and tes, ine igh pres ons.		12		CO1		
Π	Mineral Exploration. Principles of mineral prospecting and exploration - conceptualization, methodology and stages; sampling, subsurface sampling including pitting, trenching and drilling, core and non-core drilling, planning of bore holes and location of bore holes on ground. Core logging, geochemical exploration- nature of samples anomaly, strength of anomaly and controlling factors, coefficient of aqueous migration.									CO2		
III	Mineralogy and geochemistry of a Origin and Mineralogy and geocheminerals. Instrumental techniques measurement of radioactivity. Radio prospecting and assaying of Distribution of radioactive minerals	radioac mistry of of ioactive mine in Indi	tive of r lete e m ral a. R	mi adie ctio ctio ethe de adie	iner pact n a ods pos pact	als. ive and for sits. ive		12		CO2		

CO2									
202									
Text Books									
Mineral Deposits. Allied Publishers Ltd., New Delhi.									
ern									
NT									
rs, new									
n Wiley									
Jew									
Guindy,									
1. https://www.britannica.com/topic/economic-geology									

3.	https://energymining.sa.gov.au/minerals/mineral-commodities
4.	https://www.slideshare.net/mobile/monokaonaBoruah/magmatic-deposits- economic-geology
5.	https://link.spring.com/
0	

CO1: Students will have the knowledge and skills to recognise common ore minerals in hand samples and under the microscope.

CO2: Demonstrate familiarity with a wide range of mineral deposits, including recognising the overall geometry, zonation and alteration patterns associated with specific classes of metallic mineral deposits,

CO3: To get awareness on geochemistry of radioactive minerals

CO4: Fundamentals of coal petrology, Gain knowledge on the Origin, migration and entrapment of natural hydrocarbons

CO5: Student learns more knowledge on industrial aspects in geological studies.

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	2	2	3	2
CO 4	3	3	3	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3

CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		v					s	Marks			
Subject Code Subject Name		Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
23GEOS306	Skill Enhancement course – II Field studies, written report and evaluation	SEC	Y	-	-	-	3	4	25	75	100

SEMESTER-III: INTERNSHIP (II year)

								SI DO T							
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total				
23GEOI307	INTERNSHIP	Int	Y	-	-	-	2	-	25	75	100				
Course Object	ives														
	The students will enhance their writing skills.														
	They will acquire knowledge about writing their assignments.														
	They will delve into unchartered territory with regard to Scientific/Technical writing of research papers/reports.														
	The students will understand what is Bibliography, how to cite references and how to quote them in the text.														
	They will be trained in how to avoid redundancies, which constitute a major problem while writing a Scientific Paper/Technical Report.														
UNIT	DetailsNo. of HoursCourt Object s							rse tive:							
Ι	The Pre-Writing Stage: Why Write? Paper?-What is a Technical Rep Scientific Paper or ReporT: Structur		12		CO	1									

	Framework-Format-Keeping a Card Index-Assembling the Data. Contents Of Scientific Papers; The Parts of a Scientific Paper-Preliminaries-Text-End Material								
II	Contents Of Technical Reports: Types of Reports- Investigations-Proposals-Progress Reports-Information- Feasibility Study-Alternative Order. Illustrations and Tables: Maps-Line Drawings-Graphs-Photographs- Current Practices on Illustrations-tables.	12	CO2						
III	Style and Form: Accuracy of Content-Clarity and simplicity of Expression-Coherence-Conciseness-Logical Sequence. Aids To Writing: Grammar and Usage- Abbreviations-Compounding of words-Placement of Phrases- Italics-Numerical Expressions-Units and Symbols-Punctuation-Spelling-Conclusion.	12	CO2						
IV	Writing Practices: Rewriting-Readability-Checklist- Preparation of Final Manuscript. On Proof Reading: Proof reading Requirements-Proof Reading Symbols- Modern Methods of MS Preparation. About Publishing: Procedures-Double Publishing-Authorship-Copyright- Cataloguing- Guarantees-Reproduction of Published Material-Royalty-Conference Proceeding.	12	CO2						
V	Refrees, Formats And Proofs: Duties of a Referee- Standard Format Requirements-Editing of Proofs. Oral And Poster Presentations: Preamble-Mode of Oral Presentation-Aids to Oral Presentation-Poster Presentation. Project Proposals: Types of Project Proposals- The Strategy Project Proposals-Some formats of Project Proposals- Project Proposal Evaluation- Examples of Evaluations.	12	CO2						
1.Whitesides, G. Writing a Scientific Paper Full text. Originally presented at the 231st National Meeting of the American Chemical Society (ACS) in Atlanta, GA, March 26-30, 2006. Division of Chemical Information, CINF 17.									
2. The Science of Scientific Writing Full textan article by George Gopen and Judith Swan, published in American Scientist, Vol. 78, No. 6 (November-December 1990), pp. 550-558.									
П	References Books atest editions, and the style as given below must be strictly	adhered to)						
1.Guide to Scientific and Technical Writing - P. G. Cooray 1992. ISBN - 9559543407, 9789559543404, 159 pages									
	Web Resources								

	1.	https://www.springer.com/journal/12594
\sim	<u> </u>	

CO1: students understand the basis of writing skills.

CO2: students practice how to write the technical reports

CO3: Students learn about the styles and form, grammar, spelling and conclusion

CO4: Student gain about the writing practices

CO5: Understand to prepare the poster presentation and preparation of project proposals

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	2	3	3	3	3	3	1	3	3
CO 4	2	3	3	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	3	3	3	2	3

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-IV: (Second year)

								s		Marks			
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total		
23GEOC401	Core XI : Applied Geochemistry	Core	-	-	-	-	5	5	25	75	100		
Course Object	ives		L										
CO1	To know understand the origin of ge	ochemi	cal	elei	nen	ts.							
CO2	To understand the geochemical diffe	rentiati	on o	of e	lem	ents	5.						
CO3	To gain knowledge on geochemical ex	ploratio	n.										
CO4	To know geochemical sampling tech	niques.											
CO5	To prepare Geochemical anomaly m	aps.											
UNIT	Details						N H	o. of ours	5	Course Objectives			
Ι	Geochemistry, Introduction, definit Origin and abundance of element elements in lithosphere. Geochemica	ion, ai nts. D al cycle	m a istri	und but	sco ion	ope. of		12		CO1			
II	Geochemical classification of ele- differentiation of elements in exog cycle. Redox reactions and Eh-pH applications.	ments. genic a diagra	Ge nd ams	och end an	emi loge d tł	ical enic neir	12			CO2			
III	Geochemical Exploration: Introdu geochemical exploration, geoche mobility, stability of minerals, geoc Methods of surveying and san background value, threshold value, Study of primary and secondary forms and patterns,	ction, emical chemica mpling: path fir patter	Prin en al as <i>A</i> nder ns	ncip ssoc Anor ele disp	oles onm ciati mal omer pers	of ent on. ies, nts. ion		12		СО	02		
IV	AnswerAnswerAnswerAnswerIthogeochemicalprospecting(b)HydrogeochemicalIthogeochemicalprospecting(b)HydrogeochemicalIthogeochemicalinResidualoverburdeneachedoreoutcrops,GossansandResidualsoilsansportedoverburden.Ithogeochemical					(a) ical len. oils		12		СС	02		
V	Methods of geochemical Biogeochemical prospecting, Geob Geochemical trace element ind significance. Geochemical anom	exp otanica dicators aly n	olora l pr s a nap	ation cosp and co	n-II ecti tł	:(a) ing. neir ept,		12		СО	02		

[
	preparation, and interpretation of anomalies for
	Identification of potential mineralized zones.
1	Erfe W.C. 1064. Creation of call da Ma Carry Hill Deals Ca
1.	Fyfe, w.S.1964, Geochemistry of solids. Mc Graw Hill Book Co.,
2.	Goldschmidt, V.M.1954, Geochemistry, Oxford University press.
3.	KrauskopfK.B, 1986, Introduction to geochemistry, , Mc Graw Hill.
4.	Mason, B.1971, Principles of Geochemistry, John Wiley & Sons.
5.	Mason, B. and Moore. C.B. 1991, Introduction to Geochemistry, Wiley Eastern
5.	Rankama and Sahama, (1950), Geochemistry, University of Chickago Press,
7	Misra K.C. (2005) Introduction To Geochemistry: Principles And
7.	Applications.Wiley India.
8.	William M. White (2013) Geochemistry. Wiley-Blackwell.
	References Books
(La	itest editions, and the style as given below must be strictly adhered to)
(La	H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic
1.	H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London
1. 2.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co.,
1. 2.	Hest editions, and the style as given below must be strictly adhered to)H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, LondonJenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits,
1. 2. 3.	Hest editions, and the style as given below must be strictly adhered to)H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, LondonJenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press.
1. 2. 3. 4.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall
1. 2. 3. 4.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall Web Resources
1. 2. 3. 4. 1.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall Web Resources https://link.springer.com/chapter/10.1007/
1. 2. 3. 4. 1. 2.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall Web Resources https://link.springer.com/chapter/10.1007/ https://www.sciencedirect.com/sciencedirect.com/science/article/pii/
1. 2. 3. 4. 1. 2. 3.	Itest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall Web Resources https://link.springer.com/chapter/10.1007/ https://www.sciencedirect.com/sciencedirect.com/science/article/pii/ https://www.google.com/url?sa=t&source=web&rct=j&url=https//mines.gov.in/
1. 2. 3. 4. 1. 2. 3. 4. 4. 1. 2. 3. 4.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall Web Resources https://link.springer.com/chapter/10.1007/ https://www.sciencedirect.com/science/article/pii/ https://www.google.com/ur1?sa=t&source=web&rct=j&ur1=https//mines.gov.in/ https://www.ncbi.nml.gov/books/
1. 2. 3. 4. 1. 2. 3. 4. 5.	Hest editions, and the style as given below must be strictly adhered to) H.E. Hawkes, J.S. Webb. 1979. Geochemistry in Mineral Exploration,: Academic Press, London Jenners, 1987. Geochemical exploration, Universal Books Distributors Co., Kovalevskii, A.L. 1979, Biogeochemical exploration for mineral deposits, Oxonian press. Arthur Brownlow 1982, Geochemistry, Prentice Hall Web Resources https://link.springer.com/chapter/10.1007/ https://www.sciencedirect.com/sciencedirect.com/science/article/pii/ https://www.google.com/ur1?sa=t&source=web&rct=j&ur1=https//mines.gov.in/ https://www.ncbi.nml.gov/books/ https://www.sciencedirect.com/sciencedirect.com/science/article/pii/

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	2	2	3	2
CO 4	3	3	3	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	3	2	3

								S		Mark	s
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Houn	CIA	External	Total
23GEOC402	Core XII Engineering and Mining Geology	Core	Y	-	-	-	5	6	25	75	100
	Course Obje	ectives									
C01	To enumerate the different aspects o	To enumerate the different aspects of engineering geology				,					
CO2	To briefly summarise the properties and significance of on the basis of engineering geology				diffe	erent	Eart	th mat	erials		
CO3	To briefly summarise the properties on the basis of engineering geology	s and si	igni	fica	nce	of	diffe	erent	Eart	th mat	erials
CO4	To employ the students in geotechn the various mining methods adopted	ical inv in addi	vest	igat 1 to	ions esti	s an mat	d ma ion o	ake t of or	hem e res	under erves	stand
CO5	To theories the knowledge										
UNIT	Details						N H	lo. oi lour:	f s	Cou Objec	rse tives
Ι	Engineering geology: Engineering soft sediments and soils – Geolo pertaining to bridges, buildings, c airfields – Types of reserver investigations of reservoir sites.	proper ogical lams, l oirs –	ties invo high	of estig way Geo	roc gatio /s a logi	cks, ons and ical		12		CC)1
Π	Problems pertain to tunneling in har Geological investigations prece Geological investigations pertaining coastal erosion – Shoreline engineer retaining walls – Problems and solut	rd and s ding g to ha ing – C ions.	soft tun arbo cons	gro neli ors, truc	und ng doc tior	ls – – cks, 1 of		12		CC	02
III	Mining geology: Terminology used in metal mines Terminology used in coal mines – Prospecting and exploration – Alluvial mining methods – Quarrying – Opencast mining – Mine supports – Mine atmosphere.				s – and g –		12		CC	02	
IV	Methods of underground metal mining: Without artificia supports – With artificial supports – Cut and fill method – Shrinkage stoping – Caving methods.					cial ods		12		CC)2
V	Coal mining: Longwall advancing – – Board and Pillar method – Horizon	- Longv 1 minin	wall g.	ret	reat	ing		12		CC	02

	Text Books						
1	Arogyaswamy, R.N.P. (1996) Courses in Mining Geology. 4 th Edition. Oxford and						
1.	& IBH Publishing Co., New Delhi.						
	Peters, W.C. (1978) <i>Exploration and Mining Geology</i> . 2 nd Edition. John Wiley &						
2.	Sons, New York						
	,						
2	Vitousek P.M, Global Change and Natural Resource Management, Beyond global						
3.	warming: Ecology and global change. Ecology 75, 1861-1876.						
Δ	Miller T.G. Jr, Environmental Science, Wadsworth Publishing Co. (TB)						
т.							
5.	Thomas, R.T., Introduction to Mining methods, McGraw Hill, New York(1986)						
	References Books						
(La	test editions, and the style as given below must be strictly adhered to)						
1	Blyth, F.G.H. (1963) A Geology for Engineers. 4 th Edition. The ELBS & Edward						
1.	Arnold (Publishers) Ltd., London						
	Legget, H.F. and Hatheway, A.W. (1988) <i>Geology and Engineering</i> . 3 rd Edition.						
2.	McGraw-Hill Book Co., New York						
3.	Arogya swamy R.N.P, Courses in Mining Geology, Oxford &IBH, New						
	Delhi(1988)						
4.	Singh, R.D, Coal Mining, New Age Publishers, Delhi(1998)						
5.	Hartman, H.L, SME Mining Engineering Handbook, SME Colorado, USA (1992)						
	Web Resources						
1.	1. https://link.springer.com/chapter/10.1007/						
2.	https://www.sciencedirect.com/sciencedirect.com/science/article/pii/						
3.	https://www.google.com/ur1?sa=t&source=web&rct=j&ur1=https//mines.gov.in/						
4.	https://www.ncbi.nml.gov/books/						
5.	https://www.sciencedirect.com/sciencedirect.com/science/article/pii/						

CO1: Students can understand the Engineering properties of rocks

CO2: student can apply the knowledge and ideals on geological investigations for constructions

CO3: Getting knowledge about the alluvial mining methods

CO4: Study the methods of underground metal mining

CO5: Understand the knowledge about the coal mining methods and techniques

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	3	3	1	2	3	1	2	1	3
CO 2	2	3	3	1	2	3	1	2	1	3
CO 3	2	3	3	1	2	3	1	2	1	3

CO 4	2	3	3	1	2	3	1	2	1	3
CO 5	2	3	3	1	2	3	1	2	1	3

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

S-Strong-3 ; M-Medium -2 ; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		~						LS		Mark	s
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hou	CIA	External	Total
23GEOD403	Project with viva-voce	Core	Y	-	_	-	7	10	25	75	100

Subject CodeSubject Name \hat{V}_{0} </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>S</th> <th></th> <th>Mark</th> <th>KS .</th>									S		Mark	KS .
23GEOE404Elective VI Petroleum Exploration and Mud loggingElec tiveY342575100Course ObjectivesTo Identify and enumerate the methods of drilling. To describe and enumerate the whole procedure involved in exploration of oilCourse Objectives	Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
Exploration and Mud logging tive I	23CEOE404	Elective VI Petroleum	Elec	v				3	1	25	75	100
Course Objectives CO1 To Identify and enumerate the methods of drilling. To describe and explain the oil resources. To summarize the whole procedure involved in exploitation of oil	23GE0E404	Exploration and Mud logging	tive	1	-	-	-	5	4	23	15	100
CO1 To Identify and enumerate the methods of drilling. To describe and explain the oil resources. To summarize the whole procedure involved in exploitation of oil	Course Object	ives										
resources. To summarize the whole procedure involved in exploitation of oil	COI	To Identify and enumerate the method	ods of a	drill	ing	. To	de	scrib	e an	d exp	olain tl	he oil
•		resources. To summarize the who	le proc	edu	re	invo	olve	d in	exp	oloita	tion of	of oil

	resources		
CO2	To interpret and select the prospering area for exploitation	of	
CO3	Compare and contrast the differences between prospero sites.	ous and not	n-economical
CO4	Critically assess and review the ideas at strategic situation	at the drilling	ng site
CO5	Can make hypothesis to achieve the target		
UNIT	Details	No. of Hours	Course Objectives
Ι	Petroleum Exploration – Petroleum Geology - Applied Mathematics in Petroleum Engineering. Oil Field Drilling – Onshore and Offshore Drilling - Drilling Rigs – Well Types - The Drill String – Drill Bits – Well Profile- Bore-hole volume Calculation and Displacement – Lag time – Basic Hydraulics - Drilling Fluids - Formation Pressure –Bore Hole Problems - Coring – Objective of Coring and Core Analysis- Casing and Cementing – Fishing - Well Completion – Well Testing.	12	CO1
Π	Basics of Mudlogging –Surface Logging - Tasks and Responsibilities - Geological Surveillance – Cutting Sampling - Collection, Examination – Lithological and Mineralogical Description–Calcimetry - Oil Shows- Fluorescence and Cut Fluorescence – Thin Sections – Chemical Tests – Gas Sampling – Hydrocarbon Gas Analysis – Pore Pressure calculation - Cutting Evaluation – Sample Examination Procedure - Wellsite Geo- Chemistry - Gases other than Hydrocarbons, Communication Skill - QHSE – Worksite Environmental Hazards – Offshore Safety - Quality Control.	12	CO2
III	MudloggingServices, Mudlogging Sensors –Operations – Maintenance - Inspection and calibrations–Trouble shooting - Technical Specification - Reporting - Final Well Reports - Mudlogging Unit Installation and Maintenance.Practical Mudlogging, Lab Training on Rig up and Rig Down of Sensors, Equipment and Monitoring Realtime drilling followed by a Rig site Visit.	12	CO3
IV	Down-hole Measurement - Measuring While Drilling (MWD) – MWD Principle – Telemetry Types – Formation Evaluation MWD- Sensor information – Natural Gama ray – Formation resistivity – Focused Current Resistivity (FCR) – Toroidal Resistivity – Electromagnetic Wave Propagation Resistivity –	12	CO4

	Multiple Propagation Resistivity (MPR) – Geo-Steering-		
	Neutron Porosity MWD Tools – Formation Density		
	MWD Tools – Drilling Performance MWD.		
	Down-hole Logging - Logging While Drilling (LWD) -		
	Temperature Logs – Caliper Logs – Self Potential Logs		
	(SP) – Resistivity & Conductivity Logs – Gama ray and		
	Spectral Gama ray logs – Sonic Logs – Density and		
V	Photo Electric factor Logs – The Neutron Log – The dip	10	COS
v	meter – Imaging Logs –MDT Sampling - Lithology	12	005
	reconstruction from Logs- Facies Sequences and		
	depositional environments from Logs – Sequence		
	Stratigraphy and Stratigraphy.		
-			
1	Levorsen, A.J. (2004). <i>Geology of Petroleum</i> , CBS Publish	hers and Di	stributors Pvt
1.	Ltd., Chennai. 2 nd Edition.		
-	Bhagwan Sahay. (1997). Petroleum Exploration and Explo	oitation Pra	ctices, Allied
2.	Publishers Limited, Chennai. 2 nd Edition.		
	Geology& Mineral Resources of the States of India. Mis	c Pub.No.3	0.Geological
3.	Survey of India. Kolkota. (Several individual volumes	available o	nline at GSI
	portal) GSI(2005).		
4.	The Mudlogging Handbook – Alun Whittaker		
_	Brian Frehner. Finding Oil: The Nature of Petroleun	n Geology	, 1859–1920
5.	(University of Nebraska Press; 2011) 232 p		
(1	References Books		``
(L	Atest editions, and the style as given below must be strictly Mudlogging Training Manuals GEOLOG International E	adnered to	0)
1.	Mudlogging framing Manuals – OEOEOO International E). V	
2.	The Mudlogging Handbook – Alun Whittaker		
3	An Introduction in Stratigraphy, Stamp L.D, (1964), Thor	nas Murby,	Museum St,
5.	WCI, London.		
4	Stratigraphic Principles and Practices, Weller, J.M, (1962	2), Harper a	& Bros, New
	York	<u>``</u>	
5.	Web Resources)	
1.	https://stratigraphy.org/		
2.	https://www.sepm.org/		
3.	https://www.geosocindia.org/		
4.	https://www.moes.gov.in/		
5.	https://isegindia.org/		

- **CO1:** Students gain knowledge about the Petroleum Exploration
- CO2 Students learn about the Basics of Mudlogging
- **CO3:** Students get knowledge on MudloggingServices, Mudlogging Sensors –Operations Maintenance

CO4: Students know about the Down-hole Measurement

CO5: Students able to learn on Down-hole Logging

Mapping with Programme Outcomes:

Map course outcomes for each course with programme outcomes (PO) in the 3-point scale of Strong, Medium and Low

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	3	3	3	3	3	3	3	2	3
CO 2	2	3	3	3	3	3	3	3	2	3
CO 3	2	3	3	3	3	3	3	3	2	3
CO 4	2	3	3	3	3	3	3	3	2	3
CO 5	2	3	3	3	3	3	3	3	2	3

S-Strong-3; M-Medium -2; L-Low-1.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course contribution to Pos	3.0	3.0	3.0	3.0	3.0

		Category	L	Т	Р	0	Credits	Inst. Hours	Marks		
Subject Code	Subject Name								CIA	External	Total
23GEOS405	Skill Enhancement Course - III / professional competency skills / Geological tour	SEC	Y	-	-	-	2	4	25	75	100

Semester-IV: Extension activity (II Year)

		L						s	Marks		
Subject Code	Subject Name	Category	L	Т	Р	0	Credits	Inst. Hour	CIA	External	Total
23GEOX406	Extension activity	EA	Y	-	-	-	1	-	25	75	100

((((((())))))))